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Abstract. : In this paper we have looked into Reinforcement Learning Algorithm for Prosthetic 

Knee Joint. Model Based Aggregate Policy Optimization (MBAPO).Model Free Q Learning 

with Model Based Learning,It has been found out that with Reward Shaping is an important 

aspect of Reinforment Learning and can improve the learning in many ways.We have compared 

the different reward functions and compared the performance on each learning.This approach by 

far shows the better learning reward and learn faster.This is done in OpenSim and Prosthetics 

Environment was used. 
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1 Introduction 
 

 

Prosthetic Knee or the Artificial Knee helps the amputees to restore function and is a 

replacement of their lost leg. The amputation might occur due to various reasons like 1) 

Diabetes 2) Amputation due to war. There are multiple type of prosthetic knee which are 

available ranging from Active Knee to Semi Active Knee and Passive Knee/Mechanical 

Knee. Active Knee is the one in which the knee is automatic, it is a microprocessor-controlled 

knee. Semi Active Knee has few functions driven by microprocessor and others are carried 

out mechanically while in a passive knee all the functions are mechanical. The mechanical 

knee is affordable but is not energy efficient and while the active knee is more comfortable 

and provide gait symmetry and balance to the amputee. When the amputee moves, the 

prosthetic knee mimics the flexion and extension (bending and straightening) of an 

anatomical knee joint. The automatic design of a robotic prosthesis to meet the specifications 

and physical conditions poses a major technological challenge and is a barrier to the 

technology's adoption. The primary aim of designing prosthetic systems is to support people 

with their everyday activities. These devices have allowed amputees to go about these 

activities confidently and without any hinderance.When compared to passive prostheses, 

automatic prosthetic knee systems work better as mentioned above. However, tuning a larger 

number of control parameters to personalise the unit for individual amputee users is difficult. 

Traditional control methods fail to resolve this problem, and advanced robotic technologies 

such as Reinforcement learning (RL) are naturally appealing. 
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2 Experiment  

In this study, an effective reinforcement learning algorithm for a sensor-based automatic 

prosthetic knee of a transfemoral amputee is proposed. 

The suggested method uses a model-based and model-free approach to implement a 

reinforcement learning algorithm. The MF approach is used for direct cost optimization, while 

the MB approaches provide an additional model for learning. 

 

In RL, the algorithms try to predict the result for the given problem based on the specific set of 

tuning parameters.The calculated output is then considered as an input parameter and the new 

output is evaluated till the optimal output is obtained. RL methods are mainly categorized as 

Model-Free (MF) and Model-Based (MB) approaches as stated above, while MB approaches 

often use a learning model. Model-free methods are more effective in studying complex 

environments, but they need more iterations to achieve convergence, resulting in local 

minima. Model-based methods, on the other hand, are capable of adapting to new tasks in 

dynamic environments. They also reduce the number of iterations needed to achieve 

convergence in real-time scenarios. However, since MB approaches cannot learn on their 

own, it is necessary to create an accurate model that can be studied or trained in order to 

generalise them. This is a tough problem to address since any changes to the model do not 

support policy changes. 

 

As a result, MB approaches are limited to low-dimensional spaces and necessitate complex 

design to be successful. As a consequence, it's preferable to build models that take advantage 

of the benefits of current methods while still overcoming their weaknesses. 

 

The proposed method's workflow included the use of a model-based approach as well as 

model-free learning. The model-based approach was developed using a novel Gaussian 

Mixture Based Gaussian Method. Model-free reinforcement learning model Trust Region 

Policy Optimization (TRPO) comparing TRPO, Proximal Policy Optimization (PPO), and 

Deep Deterministic Learning (DDL) were used.In order to find an efficient algorithm among 

the TRPO, PPO, and DDPG, a comparative analysis was performed. The simulation results 

showed that the TRPO algorithm archived the highest and maximum mean reward function of 

the three algorithms, so it was chosen to create a model-free approach. 

 

The performance of the proposed RL-based MBMF method was calculated using different 

performance metrics, such as mean and standard deviation measures of cost with respect to 

iterations, in an OPENSIM prosthetics setting.OPenSim Simulation Environment was used to 

perform the learning of the Model.The output of model-free approaches like DDPG and PPO 

was evaluated using the entropy penalty, loss function, loss entropy, mean entropy reward, 

and reward for mean entropy reward. Other important factors that influence the efficiency of 

MBMF approaches, such as time steps and Velocity loss, were also assessed. The loss entropy 

of the MBMF method varies, as can be seen in the simulation.The value of loss entropy 

reaches a limit of 10.6. TRPO was used to construct the MF control model. To determine the 

value of model free approaches for updating the learning policy, the MBMF algorithm was 

evaluated and the model ensembled TRPO (ME-TRPO) was compared to the Vanilla Model-

Based RL algorithm. The proposed solution improved the policy regularisation of the learning 

process, according to the results of the experimental study. It was also noticed that the 

resulting strategy outperformed all of the models significantly. 
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The model's success with an automated prosthetic knee was evaluated in various simulation 

scenarios, including learning to stand, taking a step, and taking two steps forward, and the 

results are presented. Finally, the analysis addresses the main Skeletal Observations made 

when using the OPENSIM environment, as well as the limitations encountered during the 

execution. 

 

 

 

8 Results 

 

The use of reward shaping in reinforcement learning was illustrated in this study using a variety 

of learning scenarios, including learning to stand, learning to use muscles, learning to walk 

with a cross leg penalty, and reward shaping with increasing the velocity reward. The reward 

shaping mechanism confirmed the proposed theory of reward shaping by empirically 

demonstrating the analytical findings. 

 

The reward function was performed iteratively using the following reward functions: 

● Learning to stand:   im_rew =  0.75 * p_re + 0.25 * v_re 

Where im_rew is the mean reward, p_re = position reward and v_re = velocity reward. 

 

● Learning to use muscles such as Hamstring for reward:  

im_rew = 0.5 * p_re + 0.45 * v_re + 0.05 * m_re 

Where p_re = position reward, v_re = velocity reward, and m_re = muscles_reward. 

● Learning to walk with penalty of cross leg: im_rew = 0.6 * p_re + 0.20 * v_re + 0.20 * m_re - 

0.01 * pe. 

Where p_re = position reward, p_re = velocity reward, m_re = muscles_reward, and pe = penalty 

of cross leg. 

 

 

The native learning process has a long reward horizon because it lacks the incentive benefit of a 

change. As a result, learning without incentive shaping can progress at a snail's pace. 

However, it ultimately hits the optimum value and achieves the best results. 

 

 
 

 

Figure 1: The figure above shows the penalty laid for cross leg in the reward function 
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Fig 2: Figure above show the OpenSim Simulator learning to walk in ProstheticsEnv 

 

 

 

9 Conclusion and Future Work 

 

The following are some of the drawbacks faced when implementing the MBMF approach: The 

engines were put through their paces one by one. Each training session, which takes about 4 

hours per engine, takes a long time to complete. This limits the approach's adaptability. The 

prosthetic model is unable to walk long distances. For all sessions, the same parameters were 

used. This  applies to all the algorithms. The potential expansion of this research is constituted 

based on the found shortcomings of reinforcement learning models and model-based model-

free approaches. The results indicate that the proposed solution had some design and 

operational problems, including increased complexity and the use of multiple datasets. This 

research effort will act as a base for future endeavours. This research's long-term goal is to 

improve the proposed probabilistic dynamics model, which was developed using both model-

based and model-free approaches.  
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