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Abstract:Theelectroencephalogram (EEG) signals classification playsa major role in 

developing assistive rehabilitation devices for physically disabled performs. In this context, 

EEG data were acquired from 20 healthy humans followed by the pre-processing and feature 

extraction process. After extracting the 12-time domain features, two well-known classifiers 

namely K-nearest neighbor (KNN) and multi-layer perceptron (MLP) were employed. The 

fivefold cross-validation approach was utilized for dividing data into training and testing 

purpose. The results indicated that the performance of MLP classifier was found better than 

the KNN classifier. MLP classifier achieved 95% classifier accuracy which is the best. The 

outcome of this study would be very useful for online development of EEG classification 

model as well as designing the EEG based wheelchair.  
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INTRODUCTION 

The BCI system consists of four different units: (a) signal acquisition unit, (b) signal 

processing and classification unit which extracts the features of brain signals and converts 

those feature into device commands, (c) an output device and (d) an operating mechanism for 

guiding operation [1]. The implementation of such BCI system is based on four basic 

techniques (i) P300, (ii) slow cortical potentials, (iii) steady-state visually evoked potentials 

(SSVEP), and (iv) motor imagery (MI)[2]. Among these techniques, only two BCI techniques 

namely SSVEP and MI have been mainly utilized for controlling the orthoses, exoskeleton, 

and neuroprostheses[3]. The SSVEP technique requires the external stimuli for generating the 

evoked potentials and thereby producing a higher rate of false-positive detections in long 

resting periods whereas MI-based BCI does not need any external stimulus but depends on 

the subject concentration [4]. In MI-based BCI, subject thinks either right or left-hand 

movement and this motor imagery activity of brain signal is recognized and recorded by the 

BCI system[5]. Although, the MI-based method has limited classification accuracy and 

results in poor reliability of the system[6].  

Zip disks, hard drives, CDs and optical disks are needed for storing the recordings[7]. The 

format of EEG data vary from one EEG machine to another and these formats can be 

converted into spreadsheets by using the software like MATLAB[8], [9]. The electrodes need 

to work properly to record high quality and accurate data[10]. Various kinds of electrodes are 

used in the EEG recording system like Needle electrodes, Disposable ( pre-gelled and gel 
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fewer types) electrodes, Saline-based electrodes, Headbands and electrode caps, Reusable 

disc electrodes (gold, stainless steel, silver or tin)[11].  

Any form of communication or control needs muscles and peripheral nerves[12], [13]. 

The process starts with the intention of the user [12]. This intention gives a spark to a 

complex process that activates some areas of the brain and hence, signals are transmitted to 

the muscles via the peripheral nervous system which resulted into the production of the 

desired movement for the control or communication task [14]. This process leads to generate 

an action known as efferent output or motor output. Efferent output communicates the 

impulses to the peripheral nervous system from the central nervous system and then to the 

effectors (muscles)[15]. Afferent is the opposite of efferent. In other words, it can be said that 

it conveys a message to the central nervous system from sensory receptors[16], [17]. The 

efferent (motor) pathway is necessary for controlling the motion while the afferent (sensory) 

pathway is necessary for dexterous tasks like playing the piano or violin or typing and 

learning motor skills [18], [19].  

This paper is distributed into four parts, the first part is the introduction which 

provides the information related to the classification of EEG signals. The second part 

explores the materials and method including the EEG acquisition, feature extraction and 

classification technique. The third part discusses the results obtained from MATLAB
©

 2020 

simulation whereas the fourth part demonstrates the conclusion of work followed with future 

directions. 

 

MATERIALS AND METHODS 

EEG data acquisition and pre-processing 

20 healthy human subjects participated in two recording sessions in which they 

imagined 20 right-hand movements and 20 left-hand movements per session[20]. The 

subjects were asked to sit in a comfortable armchair with a distance of 150 cm in front of the 

computer monitor[21]. Subjects were provided with all necessary instruction for data 

recordings [22]like the concept of MI and BCI setup, full-body relaxation and no movements 

during data acquisition[23]–[25][26].Fig. 1 shows the experimental accessories in which 

g.LADYbird active electrodes (g.GAMMAcap) are placed on the scalp of a subject for EEG 

data recording.  

 
Fig. 1. Experiment accessories used during the EEG signals recording 
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analogue-to-digital converters (ADC) was employed for converting analogue EEG 

signals in the digital form[27].  The minimum of 200 samples/sec sampling frequency was 

required for maintaining the all appropriate information of EEG signal having the bandwidth 

100 Hz[28].After the pre-processing steps, feature extraction was done by employing the CSP 

technique, EOG artifacts were removed by the ICA method whereas dimension reduction was 

performed by the PCA technique[29]. 

EEG feature extraction  

Feature extraction is an essential process for better classification results. To achieve a 

good performance of the classifier, one must utilize the robust feature set[30]. Fig. 2 

represents an EEG acquisitionsetup which has an EEG cap with active electrodes that transfer 

signals to the bio-signal amplifier [31]. It also consists of a computer that processes the data 

and runs the BCI application[32]. The bio-signal amplifier converts the signal from analogue 

to digital form for further processing and utilization[33]. Table 1 shows the 12 different time-

domain features utilized in this work for evaluating the performance of MLP and KNN 

classifier. 

 
Fig. 3 EEG acquisition setup for EEG data recording from a healthy human subject 

 

Table 1. Mathematical Definitions of Features 

Sr. 

No. 
Name of the Feature Equation 

1 Integrated Absolute Value 

(IAV) 
𝐼𝐴𝑉 =   𝑋𝑖 

𝑁

𝑖=1

 

2 Mean Absolute Value 

(MAV) 
𝑀𝐴𝑉 =   

1

𝑁
  𝑋𝑖 

𝑁

𝑖=1
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3 
Simple Square Integral (SSI) 𝑆𝑆𝐼 =   𝑋𝑖 

2

𝑁

𝑖=1

 

4 
Variance (VAR) 𝑉𝐴𝑅 =

1

𝑁 − 1
  𝑋𝑖 

2

𝑁

𝑖=1

 

5 

Root Mean Square (RMS) 𝑅𝑀𝑆 =   
1

𝑁
 𝑋𝑖

2

𝑁

𝑖=1

 

6 
LOG Detector (LD) 𝐿𝑂𝐺 =  𝑒

 
1

𝑁
 𝑋𝑖

2𝑁
𝑖=1  

7 
Waveform Length (WL) 𝑊𝐿 =    𝑋𝑖+1 − 𝑋𝑖 

𝑁−1

𝑖=1

 

 

8 
Average Amplitude Change 

(AAC) 
𝐴𝐴𝐶 =  

1

𝑁
  𝑋𝑖+1 − 𝑋𝑖 

𝑁−1

𝑖=1

 

 

9 

Zero Crossing (ZC) 

𝑍𝐶 =    𝑠𝑔𝑛 𝑋𝑖 ∗ 𝑋𝑖+1 ∩   𝑋𝑖 − 𝑋𝑖+1 

𝑁−1

𝑖=1

≥ 𝑇𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑   

𝑠𝑔𝑛 𝑋 =   
1   𝑖𝑓 𝑋 ≥ 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑
0                 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

 

10 Standard Deviation (SD) 𝑆𝐷 =  
1

𝑁 − 1
 𝑥𝑛

𝑁

𝑛=1

 

 

11 Kurtosis (KUT)  
𝐸(𝑥0 − 𝜇)4

𝜎4

𝑁

𝑛=1

 

 

12 
Slope Sign Change (SSC) 

𝑆𝑆𝐶 =   [ 𝑓 (𝑋𝑖 − 𝑋𝑖−1 ∗ (𝑋𝑖 − 𝑋𝑖−1)]

𝑁−1

𝑖=2

 

𝑓 𝑋 =   
1   𝑖𝑓 𝑋 ≥ 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑
0                 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Classifiers 

Classification is the process in which different items or objects are identified, 

distinguished and then comprehended [34].  In simple words, it is a process of division of 

various items or objects into groups based on some similarities or properties[35], [36]. In this 

study,MLP and KNN classifier were compared to each other with three different sessions 

EEG dataset [37]. Individual features were applied in the form of input to the classifier and 

their classification accuracies were noted down for comparison purpose. Fivefold cross-

validation method was adopted for classification accuracy computation. 
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RESULTS AND DISCUSSION 

 

In this work, two classifiers namely KNN and MLP classifier were compared using 12 

time-domain features in terms of classification accuracy. The classification accuracy can be 

defined as the ratio of the true samples to the total number of samples. 20 healthy human 

subjects participated in three sessions of EEG data recording at Bio-Medical Laboratory of 

NITTTR Chandigarh, India. Individual features accuracy were compared using KNN and 

MLP classifier in all three sessions with corresponding standard deviation. MATLAB
©

 2020 

were exploited for obtaining the simulation results of classifiers. Fivefold cross-validation 

method was employed for dividing the whole EEG dataset into training and testing purpose. 

In the Fivefold cross-validation method, whole EEG dataset was divided into five equal parts 

and one part was utilized for testing while four parts were utilized for training the classifier.   

Table 2 showed the results in term of classification accuracy during session 1 by using 

MLP and KNN classifier. Standard deviation was computed per subject. The results showed 

that the top five best features were RMS, MAV, LD, SSI and VAR with the accuracy of 

66.8±4.6%, 65.6±5.5 %, 64.9±5.1%, 58.5±3.6% and 57.7±3.4% with MLP classifier 

respectively. The least five features namely SD, KUT, SSC, IAV and AAC performed lower 

as compared to all features. The least performance features could be avoided for better results 

or replaced by other useful features. 

 

Table 2. Performance of KNN and MLP classifier for session 1 to discriminate left and right-

hand movement 

Feature Rank Features KNN (% ACC+SD) MLP (% ACC+SD) 

1 RMS 63.3±4.5 66.8±4.6 

2 MAV 62.5±4.7 65.6±5.5 

3 LD 61.6±3.6 64.9±5.1 

4 SSI 55.8±3.4 58.5±3.6 

5 VAR 54.3±3.2 57.7±3.4 

6 WL 51.4±6.0 54.5±6.2 

7 ZC 48.9±2.5 51.6±3.1 

8 SD 40.8±5.1 44.4±5.4 

9 KUT 38.6±9.1 41.7±10.3 

10 SSC 36.5±2.4 39.6±3.2 

11 IAV 31.5±3.7 34.4±3.8 

12 AAC 25.2±2.4 31.6±2.0 

 

The performance of second session EEG dataset was demonstrated by Table 3 for 

MLP and KNN classifier. RMS feature was found best feature followed by MAV, LD, SSI 

and VAR whereas lowest-performing features were found as SD, KUT, SSC, IAV and AAC. 

Best performing feature was always suggested whereas lowest-performing features should be 

avoided while forming the final feature vector. The performance of MLP classifier was found 

better than the KNN classifier for classifying the left and right-hand motor-imagery EEG 

dataset. 
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Table 3. Performance of KNN and MLP classifier for session 2 to discriminate left and right-

hand movement 

Feature Rank Features KNN (% ACC+SD) MLP (% ACC+SD) 

1 RMS 63.5±4.1 66.5±4.8 

2 MAV 62.8±4.4 65.2±5.6 

3 LD 61.7±3.8 64.5±5.5 

4 SSI 55.9±3.2 58.2±3.3 

5 VAR 54.5±3.6 57.4±3.2 

6 WL 51.7±5.5 54.2±6.6 

7 ZC 48.8±2.8 51.8±3.7 

8 SD 40.7±4.5 44.8±5.7 

9 KUT 38.5±8.8 40.5±9.3 

10 SSC 36.5±2.6 36.9±2.7 

11 IAV 31.8±3.4 34.1±3.1 

12 AAC 25.4±2.6 31.7±2.8 

 

Similarly, the performance of the third session EEG dataset was demonstrated in 

Table 4. Again the RMS feature was found best feature followed by MAV, LD, SSI and VAR 

whereas lowest-performing features were found as SD, KUT, SSC, IAV and AAC. It was 

clear from Table 2 to Table 4 that performance of MLP classifier was found better than the 

KNN classifier for classifying the left and right-hand motor-imagery EEG dataset. MLP 

classifier achieved 95% classification accuracy when all features combined in the form of the 

feature vector. So, MLP classifier was the best classification method and suggested for 

developing the online model for classifying the EEG dataset. 

 

Table 4.Performance of KNN and MLP classifier for session 3 to discriminate left and right-

hand movement 

Feature Rank Features KNN (% ACC+SD) MLP (% ACC+SD) 

1 RMS 64.6±4.3 67.4±4.7 

2 MAV 63.7±4.6 66.5±5.5 

3 LD 62.6±3.7 65.8±5.4 

4 SSI 56.8±3.4 59.6±3.2 

5 VAR 55.7±3.8 58.4±3.1 

6 WL 53.2±5.6 55.2±6.5 

7 ZC 49.7±2.2 53.3±3.6 

8 SD 43.4±4.4 45.6±5.9 

9 KUT 40.4±8.5 42.8±9.2 

10 SSC 38.8±2.5 40.7±2.6 

11 IAV 33.9±3.7 35.8±3.4 

12 AAC 27.5±2.3 33.1±2.6 
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CONCLUSION 

This work reported the comparative analysis of 12-time domain features by 

employing the MLP and KNN classifier in term of classification accuracy. 20 healthy human 

subjects were participated in three EEG data recording sessions in they imagine right and left-

hand movements. After data acquisition, pre-processing and feature extraction was done 

followed by the classification. Results showed that the performance of MLP classifier was 

better than the KNN classifier and top five best features were RMS, MAV, LD, SSI and VAR 

whereas top lest performing features were SD, KUT, SSC, IAV and AAC. Further, the 

classification accuracy could be improved if more robust and novel features were utilized for 

forming the final feature vector. The finding of this study would be useful for online EEG 

classification model development towards the rehabilitation robotic designing.  
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