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ABSTRACT 

Theoretically, the memristor as the fourth basic circuit element, was firstly postulated by Chua based on the integral 

theory of fundamental circuit in 1971. It has the unique electrical characteristics relative to resistor, capacitor and 

inductor. In 2008, researchers at HP’s Laboratory implemented the physical model of the memristor, which means that 

it opens up new horizons for further development on circuit design. In 2009, the adaptive behavior of cells, which was 

similar to the property of the memristor, was proposed by means of the single-celled amoeba experiment. Based on the 

experimental verification, more research results show that artificial neural networks with variable weights constructed 

by the memristor can better simulate human brain like associative memory functions.  

However, as an extension of RNNs, the main challenges we face are how to address the problems of complex-valued 

states and connection weights, especially complex-valued activation functions. Based on the Liouville’s theorem, the 

activation function in CNNs cannot be both bounded and analytic while it’s usually chosen to be a smooth bounded 

function in RNNs. The other way doesn’t need to divide into two parts but should satisfy the Lipschitz continuity. For 

example, some complex-valued activation functions can’t be divided into two parts, and some are discontinuous. As is 

known to us, when the system is discontinuous, it’s difficult to ensure the stability of system. On the other hand, it’s 

clear that the delay-dependent stability of neural networks(NNs) are less conservative than delay-independent ones, 

since time-delay phenomena are often encountered in various practical situations and may have negative effect on 

system stability.  

 

Keywords: Memristor-Neural network – Lyapunov-Krasovskii – Discrete time – Complex valued function- 

equilibrium  

 
INTRODUCTION 

Mean while, a series of results have been acquired on the delay-dependent stability of Discrete-time NNs the 

Lyapunov-Krasovskii functional and linear matrix inequalities (LMIs). In this paper, an extended matrix inequality is 

proved to guarantee the delay-dependent stability of discrete-time MCVNNs. Hence, the dynamical behaviors of 

discrete-time MCVNNs are also analyzed in this article.  

 

Model description and preliminaries 

In this section, a class of memristor-based neural networks (MNNs) are introduced systematically.  By Kirchhoff’s 

current law, the ith subsystem of MNNs can be written as 

               v i t = −divi t +  aij
n
j=1  vi t  fj  vj t     

                                    + bij

n

j=1

 vi t  fj  vj t − T  + ui , t ≥ 0,                          (1) 

Where i ∈ 𝔏 =  1,2,… . . n , n corresponds to the number of units in the neural network; vi(t) is the voltage of the 

capacitor ℭi ; di > 0 represents the neuron self-inhibitions;fj  vj t  , fj  vj t − T   are the functions without and with 

time delays; T(t) corresponds to the time delay and 0 ≤ T1 ≤ T t T2;  ui denotes the external input or bais, 

aij .  , bij (. ) are the memristor-based weights given by  
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aij (vi t ) =
𝔐ij

ℭi
× sgnij , bij (vi t ) =

𝔐 ij

ℭi
× sgnij  

                                       sgnij =  
1,         i ≠ j  
−1,    i = j

  

Where 𝔐ij  is the memristor between the feedback function fj  vj t   and vi t ;𝔐 ij  is the memristor between the 

feedback function fj  vj t − T   and vi t . 

In this paper, we will consider complex-valued networks due to its extensive applications. In the complex domain, 

complex-valued states, connection weights, and activation functions exist in the MNNs, and MCVNNs with time 

delays can be written as follows from (1) 

                    z i t = −dizi t +  aij
n
j=1  zi t  fj  zj t     

                                   + bij

n

j=1

 zi t  fj  zj t − T  + ui                                          (2) 

The above system (2) also can be rewritten as matrix from 

z  t = −Ez t + A z t  f z t  + B z t  f  z t − T t   + u 

                       = F  t, z t , z t − T t                                                                           (3) 

Where 

z t =  z1 t , z2 t ,… . . , zn t  
T
∈ ℂn ; D = diag d1 , d2 , … , dn 

T ∈ ℝn×n  

  A z t  =  aij zi t   ∈ ℂ
n×n , B z t  =  bij zi t   ∈ ℂ

n×n  

         f .  = (f1 .  , f2 .  , … . , fn .  )
T : ℂn → ℂn  and u = (u1 , u2 , … . , un)T ∈ ℂn  

 the feature of memristor and current voltage characteristic complex-valued connection weights are generally defined 

as follows 

aij zi t  =  
a ij ,  zi t  < πj

a ij ,  zi t  > πi

  

bij zi t  =  
b ij ,

b ij ,
  zi t  < πi

 zi t  > πi
 

Where the switching jumps πi > 0, a ij , a ij , b ijand b ij  are constant numbers.The initial condition combined with system 

(2) is given by 

zi ϑ = ψi ϑ , ϑ ∈  −T2 , 0 , i ∈ 𝔏 

 

BASIC DEFINITIONS 

Definition 1 

 The linear mapping from the complex space to the real space is defined as follows 

For z ∈ ℂn , let 

                    φ z =  
Re(z)
Im(z)

 ∈ ℝ2n  

For A ∈ ℂm×n n > 1 , let 

          φ A =  
Re(A) −Im(A)
Im(A) Re(A)

 ∈ ℝ2m×2n 

Definition 2 

 For the system x  t = g(t, xt) with discontinuous right-hand sides, a set-valued map 𝒢 t, xt : ℝ × ∁→

2ℝ
n
defined as 

𝒢 t, xt ≜  co   [g ℬ xt , δ \𝒩 

μ 𝒩 =0δ>0

 

 Where i = 1,2 and 2ℝ
n
 denotes the set of subsets of ℝn . co   [[X] is the closure of the convex hull of X. μ(𝒩) is 

the Lebesgue measure of set 𝒩.ℬ(xt , δ) represents the open ball with radius δ centered at xt . A solution of the system 

in the sense of Filippov, with the initial condition x ϑ = ψ ϑ , ϑ ∈  −T2 , 0  is an absolutely continuous vector value 
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function x(t) on any compact subinterval of   0, t1 , t1 ∈ (0, +∞], which satisfies the differential inclusion x  t ∈
G t, xt ,a.e t ∈[0, t1). 
We given the Filippov solutions of system  

             φ z  t  = −φ E φ z t  + φ A z t   φ  f z t    

                      +φ B z t   φ f  z t − T t    + φ u  

For any compact subinterval of  0, t1 , t1 ∈  0, +∞ , the Filippov solutions φ z t  ,with the initial condition 

φ z ϑ  = φ φi ϑ  , ϑ ∈  −T2, 0  satisfies the following differential inclusion 

                              φ(z  t ) ∈ ℱ t, zt , a.e t ∈[0, t1)                                (4) 

Where,  

           ℱ t, zt = (ℱT t, zt
R , (ℱT t, zt

I )T          

          ℱ t, zt
R =   co   [FR ℬ zt

R , δ \𝒩 

μ 𝒩 =0δ>0

 

and 

          ℱ t, zt
R =   co   [FR ℬ zt

R , δ \𝒩 

μ 𝒩 =0δ>0

 

 From the above analysis, we shall investigate dynamical behaviors of the differential inclusion (4) instead of 

system (2).  
 

Definition 3 

 A set-valued map F with nonempty values is said to be upper semi continuous at x0 ∈ X if, for any open set N 

containing F x0 , there exists a neighborhood M of x0 such that F M ⊂ N. 
 In view of whether the activation functions is continuous, we given the following two assumptions 

(H1)′  the activation function f(. ) satisfies 

li
′′ ≤

φi f z  − φi(f w )

φi z − φi(w)
≤ li

′ , ∀z, w ∈ ℂn , z ≠ w 

Where i-1,2,…,2n, and li
′ , li

′′  are some constants. (H1)the activation functions fi .  = fi
R .  + fi

I , fi
R .  , fi

I(. ) are 

piecewise continuous. 

 i.e., fi
R .  , fi

I(. ) are continuous in ℝ except a countable set of points ρkand ρ kof discontinuity, where there 

exists finite right and left limits, respectively; Moreover,fi
R .  , fi

I(. ) have a finite number of discontinuities on any 

compact interval of ℝ. 
 On the one hand, if activation functions in system (4) Satisfy the assumption (H1)′ , from set-valued maps 

theories and differential inclusions, system (4) can be written as the following differential inclusion 

     φ z  t  ∈ −φ E φ z t  + co    φ  A z t    φ  f z t   + co    φ  B z t    φ f z t − T(t)   + φ u  

Moreover, there exists measurable function matrices AR ∈ co    A R , A R , AI ∈ co    A I , A I , BR ∈ co    B R , B R , AI ∈

co    B I , B I , such that  

               φ z  t  = −φ E φ z t  + φ A φ f z t    

                                          +φ B φ f z t − T(t)   + φ u                          (5) 

Where 

             φ A =  AR −AI

AI AR  , φ B =  BR −BI

BI BR  , 

and  

               A R = (a ij
R)n×n , A R = (a ij

R)n×n , A I = (a ij
I )n×n , A I = (a ij

I )n×n , BR = (b ij
R)n×n , B R = (bij

R)n×n , B I =

(b ij
I )n×n , B I = (b ij

I )n×n  

  On the other hand, if activation functions in system (4) satisfy the assumption (H1), from set-valued maps 

theories and differential inclusion, system (4) can be written as the following differential inclusion 

φ z  t  ∈ −φ E φ z t  + co    φ  A z t    φ  f z t      + co    φ  B z t    φ f  z t − T t    + φ u  

Further, system (3.4) also can be rewritten as 
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               φ z  t  = −φ E φ z t  + φ A φ γ t   

                                                      +φ B φ γ t − T t   + φ u                      (6) 

Where 

                φ γ t  =  
ςR t 

ηI t 
 , φ  γ t − T t   =  

ςR t − T t  

ηI t − T t  
  

And 

                   ςR .  ∈ co    f R z .    , ηI .  ∈ co    f I z .    . 
Definition 7  

φ(z ) is an equilibrium point of system 

                  φ z  t  = −φ E φ z t  + φ A φ γ t   

                                        +φ B φ γ t − T t   + φ u  

 if and only if  

φ  z t  = −φ E φ z t  + φ A φ α t  + φ B φ α t − T(t)  + φ u  

               0 ∈ −φ E φ z  + co   [φ A z  φ f z    + co   [φ B z  φ f z    + φ u  

 If φ z   is an equilibrium point of system, it turns out that there exists a vector φ α  ∈ ℝ2nsuch that  

0 = −φ E φ z  + φ A φ α  + φ B φ α  + φ u ,φ α  ∈ co   [φ f z  )  
That is to say, φ α   is an output equilibrium point of system 

φ  z t  = −φ E φ z t  + φ A φ α t  + φ B φ α t − T(t)  + φ u  
 corresponding to φ(z ) . 

 
DISCRETE-TIME MCVNNs 

         While the continuous-time systems can’t be an advantage for practical applications including digital computer 

and quadratic optimization, in this section, major objectives are to make the qualitative analysis on the discrete-time 

MCVNNs which are the counterparts of the continuous-time ones  

                     φ ż t  =  −φ E φ z t  + φ A φ(f  z   
t

h
 h  )) 

                                      +φ(B)φ(f  z   
t

h
 h −  τ   

t

h
 h    

+ φ u ,                                                                                            (7) 

                     φ(ż(t)) = −φ(E)φ(z(t)) +  φ(A)φ(γ( 
t

h
 h))+ 

                                φ(B)φ(γ( 
t

h
 h − [τ( 

t

h
 h)])) + φ(u)                               (8) 

for t ϵ nh,  n + 1 h , n ϵ ℤ+, where h is a fixed positive real number denoting a uniform discretization step-size. 

Clearly, for t ϵ [nh,  n + 1 h), n ϵ ℤ+, we have  
t

h
 = n. Let  T   

t

h
 h  = l n , l1 ≤ l n ≤ l2 , li  ϵ  ℤ+ , i =  1,2. For 

convenience in the following, we use the notation z (nh) = z(n). then, we can integrate (7) and (8) over [nh,t) 

separately and by allowing t→(n+1)h in the above, we obtain after some simplification that 

φ(z(n + 1))  =   (φ(F) −  φ(θ(h) φ (E)) φ (z(n)) +  φ(θ(h)) φ (A) φ(f(z(n))) 

                            + φ (θ(h)) φ (B) φ (f(z(n − l(n))))  +  φ(θ(h)) (u),                   (9) 

        φ(z(n + 1))   =   (φ(F) −  φ(θ(h)) φ(E)) φ (z(n)) +  φ(θ(h)) φ(A) φ(γ(n)) 
                         + φ(θ(h)) φ(B) φ(f(γ (n − l(n)))  +  φ((θh)) φ(u),                    (10) 

For n ϵ ℤ+, where 

                           φ(E)  =  
E 0
0 E

  ,         φ(θ(h))  =  
θ(h) 0

0 θ(h)
  

and (h)  =  diag(θ1(h),… θi(h)), θi(h)  = 
1−e−d i h

d i
,i ∈ 𝔍 At the same, the connection weights of the system can also 

be defined: 

   aij
R(zi(n)) =     

aij
R′  ,  zi

R(n) < πi ,

aij
R′′  ,  zi

R(n) > πi ,
              aij

I (zi(n)) =     
aij
I′  ,  zi

I(n) < πi ,

aij
I′′ ,  zi

I n  > πi ,
  

 bij
R(zi(n)) =     

bij
R′  ,  zi

R(n) < πi ,

bij
R′ ′ ,  zi

R(n) > πi ,
              bij

I (zi(n)) =     
bij
I′  ,  zi

I(n) < πi ,

bij
I′′ ,  zi

I n  > πi .
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It is not difficult to verify that θi(h) > 0 if di > 0, ℎ > 0. the initial condition zi(ϑ)  =  ψi(ϑ), ϑ ϵ [-l2,0]z, system (9) 

and (10) are the discrete time analogues of the continuous time system (7) and (8),respectively.  

              Prior to carrying out the qualitative analysis of the discrete-time MCNNs, we first should give the existence 

interval and continuation of the solution, which is the prerequisite to study the stability of solutions. 

 
Theorem 1 

  Suppose (H)′  is satisfied and there exists positive definite symmetric matrices P2 ∈  R6n×6n  , Qi  ϵR4n×4n , Ri ∈
 R2n×2n , i = 3,4, positive-definite diagonal matrices  

J iϵ R2n∗2n,i = 1,2,3,4, and K j  ϵ R2n∗2n , j =  1,2,3,  such that 

ϕ  l n  = P  l n  + Q + R  l n  + 𝒥 + 𝒦 < 0 

Where 

P (l(n)) =  −(Γ 2 + l(n)Γ 1)T  P2(l(n)Γ 1 + Γ 2) + (Γ 3 + l(n)Γ 1)TP2(l(n)Γ 1 + Γ 3) 

                  Q =  diag(Q3,Q4 − Q3 , 0−Q4,Q3, Q4, Q3,0 − Q4 , 0,0,0) 

      R(l(n)) = e−T(l1
2R3, + l12

2 R2,)e − 𝔼1R 3𝔼1 

− 
𝔼3

𝔼2
 

T

 
 
 
 
 R 4 +

l n − l1
l12

T 1 S

∗ R 4 +
l2 − l n 

l12
T 2 
 
 
 
 

 
𝔼3

𝔼2
  

                 𝒥 =  ei
T

4

i=1

L J iL ei − ei+4
T J iei+4 

               𝒦 =  (ei
T − ei+1

T )L K iL  ei − ei+1 −  ei+4
T − ei+5

T  K i ei+4 − ei+5 
3
i=1  

              Γ 1 =  

e0

e0

e10−e11

 , Γ 2 =  

e1

 l1 + 1 e9 − e1

 1 − l1 e10 − ee3 +  l2 + 1 e11−e2

  

    Γ 3 =  

(φ E − φ θ h  φ D )e1+φ θ h  φ(A)e5+φ θ h  φ(B)e7

(l1 + 1)e9 − e2

 1 − l1 e10−e3 +  l2 + 1 e11 − e4

  

             𝔼i =  
ei − ei+1

ei + ei+1 − 2ei+8
 , i = 1,2,3, 

               ei =  02n×2 i−1 n , E2n×2n , 02n×2 11−i n i = 1,2,………11 

               e = −φ θ h  φ(D))e1 + φ(θ(h))φ(A)e5 + φ(θ(h))φ(B)e7 

J i = diag j 1i , … , j 2ni  , i = 1,2,3,4,                         K j = diag  K 1i , … , K 2ni , i = 1,2,3  

Then, the system (9) is asymptotically stable for all time-varying delay.                                                                                                  

Proof 
To see this let us set  

 z (n) = z(n) − z ∗ 
Where z* is an equilibrium point of the system (28) if and only if 

−φ θ h  φ D φ z∗ + φ θ h   φ A + φ B  φ f z∗  + φ θ h  φ u = 0 

It follows the above that the system (28) can be transformed to  

φ z  n + 1  =  φ E − φ θ h  φ D  φ z  n  + φ θ h  φ A φ f  z  n   + φ θ h  φ B φ f  z  n − l n     

where φ f  z  .    = φ f z  .  + z∗  − φ f z∗   

consider the ollowing lYAPUNOV−KRASOVSKII FUNCTIONAL 

            V n = V1 n + V2 n + V3 n  
Where                                                                                                                                                                                                                                                

          V1 (n) = ξ3
T n  P2ξ3(n) 

          V2 (n) =  ξ4
T i Q3ξ4 i +  ξ4

T i Q4ξ4 i 
n−l1−1
i=n−l2

n−1
i=n−l1

 

          V3 n =l1  ∆φT z  i  R3∆φ z  i  +n−1
i=n+j

−1
j=−l1

l12   ∆φTn−1
i=n+j

−l1−1
j=−l2

 

                                                                  z  i  R4∆φ z  i   
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With P2 > 0, Qi > 0, Ri > 0, 𝑖 = 3,4  and  

ξ3(n) =  

φ(z  n )

 φ(z  i )n−1
i=n−l1

 φ(z  i )
n−l1−1
i=n−l2

 , ξ4(i) =  
φ(z  i )

φ( z  i  )
  

Clearly, this functional is positive definite. Next we mainly prove ∆V n = V n + 1 − V n  is negative defined 

combined with the vector 

ζ  t = [ζ 1
T n , ζ 2

T n , η 1
T n , η 1

T n , ζ 3
T n ]T   

Where 

  ζ 1 n =  

φ z  n  

φ z  n − l1  

φ(z  n − l2 ))

 , ζ 2 n =

 
 
 
 
 φ  f  z  n   

φ  f  z  n − l1   

φ  f  z  n − l2    
 
 
 
 

 

  η 1 n =
1

l1 + 1
 φ z  i  , η 2 n =

1

l n − l1 + 1
 

 
φ z  i  

n−l1

i=n−l(n)

n

i=n−l1

 

And 

  η 3(n) =
1

l2 − l n + 1
 φ z  i  

n−l(n)

i=n−l2

 

Calculating the ∆ vi n  i = 1,2,3   note that                                                

∆V(n) ≤ ζ T(n)ϕ (l n )ζ (n) 

Hence, system (9) is asymptotically stable if    ϕ l n  < 0 for all l n ∈  l1 , l2 .  Since ϕ (l(n)) is affine with respect 

to l(n),  ϕ (l(n)) < 0 is equivalent to    ϕ (l1) < 0 and    ϕ (l2) < 0. Then, system (9) is asymptotically stable if the 

two conditions hold. 

 

Theorem 2  

Suppose (H1),  H2  and the following conditions are satisfied 

        α − β  1 − α  −τ > 0, e− n−v n−1
v=1 < 𝑚, 0 < α < 1 

Where 

 α = 1 −   φ E − φ θ h  φ D   , β =  φ θ h     φ (A) +  φ  B     L  

 and δ =  φ θ h     φ (A) +  φ  B     N ,𝒦 = α − β 1 − α −τ  Then the φ(z  n ) of systems (10) is global 

attractivity. 

Proof 

To see this , let us set  

                        z (n) = z(n) − z ∗ 
Where z∗ is an equilibrium point of the system (10) if and only if 

     −φ θ h  φ D φ z∗ +  φ θ h   φ B  φ γ∗ + φ θ h  φ u = 0 

And φ γ∗  ϵ C0[
−

φ(f z∗ )].  It follows from the above that the system (10) can be transformed to 

φ(z (n + 1)) =

( φ E − φ(θ(h)) φ D φ z  n  + φ θ h  φ A φ γ  n  +                                              φ θ h  φ B φ γ  n − l n    

Where φ γ  .   = φ γ .   − φ γ∗  

Since the condition (H2), note that 

       φ z  n + 1   ≤    φ E − φ θ h  φ D     φ z  n    

                        + φ θ h   ( φ  A   +  φ  B   ) L  φ(z n) c 

                           + φ θ h     φ  A   +  φ  B     N  

Clearly 

 φ z  n   ≤   φ y  n    

Under the same initial conditions if φ y n   satisfies the following equation 
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  φ y  n + 1   =    φ E − φ θ h  φ D     φ y  n    

                        + φ θ h   ( φ  A   +  φ  B   ) L  φ(y n) c 

                           + φ θ h     φ A  +  φ
−
 B    N  

                              =  (1 − α ) φ y  n    +β  φ y n  c + δ 

In fact, it shows that 

                              φ y  n + 1   ≥  (1 − α ) φ y  n   c ,  φ y n  c ≤  1 − α  −τ 
Overall, We have  

                     φ y  n    ≤   [1 − α + β  1 − α  −τ)  φ y  n − 1   + δ 

                                                         ≤  φ y  0   ekn + e− n−v kn−1
v=1 +δ 

                                             ≤  φ y  0   ekn + m + δ 

Where κ =  α − β  1 − α  −τ 
            Since the comparison principle, we obtain that  

                                  φ z  n   ≤   φ z  0   e−kn +  m + δ 

Let the set  

                      S =  φ z  n  :  φ z  n   ≤ m + δ  

Then,  the φ z  n   of system (10) is global attractivity and S is a globally attractive set of the equilibrium point 

φ z ∗ . 
Hence proved 
 

CONCLUSION 

 In addition, the memristive neural network has larger storage capacities, stronger learning and memory abilities, and 

better information processing abilities in virtue of combining the advantages of memristor and cross array. Hence, in 

recent years, the study on the memristive  neural network has become a hotspot in many fields.  
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