Indian Second Wave Common COVID-19 Equation Analysis with SEIR Model and Effect of Time Delay

R.Ramesh ${ }^{(1)}$
Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram - 600 089, Kancheepuram District, Tamil Nadu, INDIA.
Email: rameshr1@srmist.edu.in
S.Balamuralitharan ${ }^{(2)}$
Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, INDIA.
Email: balamurs@srmist.edu.in

Corresponding Author: balamurs@srmist.edu.in

Abstract

This articleis the second wave on Indian pandemic for SEIR (Susceptible-Exposed-InfectiveRecovery) model with effect of time delay. We derived COVID-19 equations analysis part only (COVID-19 equation Analysis 1- COVID-19 equation Analysis 9). The mathematical analysis is very helpful for new researchers in Mathematical biology and COVID-19 part.

Keywords:COVID-19, SEIR model, second wave on Indian pandemic

1. Introduction

The same story is continued on first wave for COVID-19. Already we know that the history of the COVID-19 spread. Recently it has been published lot of papers from COVID-19 cases([1][15]).But this paper deals the new common COVID-19 equation with mathematical part only.

2. Indian second wave common COVID-19 equation

We consider the common COVID-19 equation on SEIR model [1]:

$$
\left\{\begin{array}{l}
\frac{d S(t)}{d t}=A-d S(t)-\beta S(t) I(t)-\beta_{1} S(t) I(t), \\
\frac{d E(t)}{d t}=\beta S(t) I(t)+\beta_{1} S(t) I(t)-\mu E(t)-d E(t), \tag{1}\\
\frac{d I(t)}{d t}=\mu E(t)-(\eta+d) I(t), \\
\frac{d R(t)}{d t}=\eta I(t-\tau)-d R(t-\tau) .
\end{array}\right.
$$

The key function of the complete paper is equation (1) and Table 1 gives the parameter description.

Table 1 Parametervalues of host model.

Parameter	Description	Range
A	Number of new born host	
d	Death rate of host	$1.99-2.15$
β	Transmission rate from infected sourceto suspected host	$3-12.5$
β_{1}	Transmission rate from infected host to μ	Incubation period of host
η	Infectious period of host	$10-14$ days

3. COVID-19 equation Analysis $\mathbf{1}$

Consider the system of equations' initial values:
$\left\{\begin{array}{lll}S(a) \geq 0, & E(a) \geq 0, & I(a) \geq 0, \\ S(0)>0, & E(0)>0, & I(0)>0,\end{array} \quad R(0)>0, \quad a \in[-\tau, 0]\right.$.

4. COVID-19 equation Analysis 2

Where $(S(t), E(t), I(t), R(t))$ of (1) satisfying conditions (2.1), we have $\lim _{t \rightarrow+\infty} \sup S(t) \leq \frac{A}{d}$.
Then, $t_{1}>0$ such that $S\left(t_{1}\right)>\frac{A}{d}$ and $\dot{S}\left(t_{1}\right)>0$, we have
$\dot{S}\left(t_{1}\right)=A-d S\left(t_{1}\right)-\left(\beta+\beta_{1}\right) S\left(t_{1}\right) I\left(t_{1}\right) \leq-\left(\beta+\beta_{1}\right) S(t) I(t) \leq 0 . S\left(t_{1}\right)>\frac{A}{d}$ whichcontradiction is to $\dot{S}\left(t_{1}\right)>0$.

5. COVID-19 equation Analysis 3

From (1):

$$
\begin{aligned}
& S(t)=S(0) e^{\left.-\int_{0}^{1}\left(d+\left(\beta+\beta_{1}\right)\right)(\theta)\right) d \theta}+\int_{0}^{t} A e^{-\int_{\varepsilon}^{\prime}\left(d+\left(\beta+\beta_{1}\right) I(\theta)\right) d \theta} d \varepsilon \\
& E(t)=E(0) e^{-(\mu+d) t}+\int_{0}^{t}\left(\beta+\beta_{1}\right) S(\varepsilon) I(\varepsilon) e^{-(\mu+d)(t-\varepsilon)} d \varepsilon, \\
& I(t)=I(0) e^{-(\eta+d) t}+\int_{0}^{t} \mu E(\varepsilon) e^{-(\eta+d)(t-\varepsilon)} d \varepsilon \\
& R(t)=R(0) e^{-d t}+\int_{0}^{t} \eta I(\varepsilon-\tau) e^{-d t} d \varepsilon . \\
& \text { Let } N(t)=\left[S(t)+E(t)+\frac{(\mu+d)}{2 \mu} I(t)+\frac{d}{\eta A} R(t+\tau)\right] \\
& \text { Let } c=\min \left\{d, \frac{\mu+d}{2}, \eta+d, d\right\} . \\
& \left.\begin{array}{l}
d \\
d t
\end{array} N(t)\right]=A-d S(t)-\frac{\mu+d}{2} E(t)-\frac{(\mu+d)(\eta+d)}{2 \mu} I(t)+\eta I(t+\tau)-\frac{d^{2}}{\eta A} R(t+\tau) \\
& \quad \leq A-d S(t)-\frac{\mu+d}{2} E(t)-\frac{(\mu+d)(\eta+d)}{2 \mu} I(t)-\frac{d^{2}}{\eta A} R(t+\tau) \\
& \quad<A-c\left[S(t)+E(t)+\frac{(\mu+d)}{2 \mu} I(t)+\frac{d}{\eta A} R(t+\tau)\right]=s-c N .
\end{aligned}
$$

6. COVID-19 equation Analysis 4

The basic reproductive ratio of virus for system (1) is given by $R_{0}=\frac{\left(\beta+\beta_{1}\right) A \mu}{d}$.
Infection-free equilibrium: $P_{0}=\left(\frac{A}{d}, 0,0,0\right)$,

Absent infection equilibrium:

$$
P_{1}=\left(\frac{(\mu+d)(\eta+d)}{\mu\left(\beta+\beta_{1}\right)}, \frac{A}{\mu+d}-\frac{d(\eta+d)}{\mu\left(\beta+\beta_{1}\right)}, \frac{A \mu}{(\mu+d)(\eta+d)}-\frac{d}{\beta+\beta_{1}}, 0\right)
$$

Present infection equilibrium:

$$
\bar{P}=\binom{\frac{\eta(\eta+d) A-\left(\beta+\beta_{1}\right) \mu d}{\eta d(\eta+d)}, \frac{d(\eta+d)}{\eta(\eta+d) A-\left(\beta+\beta_{1}\right) \mu d}, \frac{\mu d^{2}}{\eta(\eta+d) A-\left(\beta+\beta_{1}\right) \mu d}}{\left[\frac{\left(\beta+\beta_{1}\right) \mu\left(\eta(\eta+d) A-\left(\beta+\beta_{1}\right) \mu d\right)}{\eta d \mu}-\mu\right]} .
$$

7. COVID-19 equation Analysis 5

$$
\left\{\begin{array}{l}
\frac{d S(t)}{d t}=-d S(t)-\frac{\left(\beta+\beta_{1}\right) A}{d} I(t), \tag{3.1}\\
\frac{d E(t)}{d t}=\frac{\left(\beta+\beta_{1}\right) A}{d} I(t)-\mu E(t)-d E(t), \\
\frac{d I(t)}{d t}=\mu E(t)-(\eta+d) I(t), \\
\frac{d R(t)}{d t}=\eta I(t)-d R(t)
\end{array}\right.
$$

The characteristic equation of (3.1) is
$(\lambda+d)(\lambda+d)\left[\lambda^{2}+(\mu+\eta+2 d) \lambda+(\mu+d)(\eta+d)-\mu\left(\beta+\beta_{1}\right)\right]=0$.
If $\lambda_{1,2}=d$. are the two of the roots of the characteristic equation (3.2) and the other two roots are found by considering $\lambda^{2}+(\mu+\eta+2 d) \lambda+(\mu+d)(\eta+d)-\mu\left(\beta+\beta_{1}\right)=0$.

If $R_{0}<1$, then $(\mu+d)(\eta+d)-\mu\left(\beta+\beta_{1}\right)>0$ and $(\mu+\eta+2 d)^{2}-4\left[(\mu+d)(\eta+d)-\mu\left(\beta+\beta_{1}\right)\right]>0$.

We have
$\lambda_{3,4}=\frac{-(\mu+\eta+2 d) \pm \sqrt{(\mu+\eta+2 d)^{2}-4\left[(\mu+d)(\eta+d)-\mu\left(\beta+\beta_{1}\right)\right]}}{2}$.

8. COVID-19 equation Analysis 6

Define a Lyapunov functional

$$
\begin{aligned}
& F=\frac{1}{2}\left[S(t)-\frac{A}{d}\right]^{2}+\frac{A}{d} E(t)+x I(t)+\eta R(t)+\int_{t-\tau}^{t} S(\alpha) E(\alpha) R(\alpha) d \alpha, \\
& \left.F^{\prime}\right|_{(1.2)}=\left[S(t)-\frac{A}{d}\right]\left[-d\left(S(t)-\frac{A}{d}\right)-\left(\beta+\beta_{1}\right) S(t) I(t)\right]+\frac{A}{d}\left[\left(\beta+\beta_{1}\right) S(t) I(t)-(\mu+d) E(t)\right]+ \\
& x[\mu E(t)-(\eta+d) I(t)]+\eta[\eta I(t)-d R(t)]+S(t) E(t) R(t) .
\end{aligned}
$$

Since $\left(\beta+\beta_{1}\right) S(t) I(t)=\left(\beta+\beta_{1}\right)\left[S(t)-\frac{A}{d}\right]+\frac{\left(\beta+\beta_{1}\right) A}{d} I(t)$, we have

$$
\begin{aligned}
& F_{(1.2)}=-d\left(S(t)-\frac{A}{d}\right)^{2}-\left(\beta+\beta_{1}\right) I(t)\left(S(t)-\frac{A}{d}\right)^{2}-\left[\frac{(\mu+d) A}{d}-x \mu\right] E(t)+ \\
& {\left[\frac{\left(\beta+\beta_{1}\right) A^{2}}{d^{2}}-x(\eta+d)+\eta^{2}\right] I(t)+[S(t) E(t)-\eta d] R(t)}
\end{aligned}
$$

Since $R_{0}<1$ reduces to $\frac{A(\mu+d)}{\mu d}-\frac{\left(\beta+\beta_{1}\right) A^{2}}{(\eta+d) d^{2}}>0$, there must be a positive constant
$x\left(x \in\left[\frac{\left(\beta+\beta_{1}\right) A^{2}}{(\eta+d) d^{2}}, \frac{A(\mu+d)}{\mu d}\right]\right)$, such that $\frac{(\mu+d) A}{d}-x \mu>0$ and
$\frac{\left(\beta+\beta_{1}\right) A^{2}}{d^{2}}-x(\eta+d)+\eta^{2}>0$.
Suppose $S(t), E(t), I(t), R(t)$ are positive and $S(t) \leq \frac{A}{d}$ holds, we have $\left.F^{\prime}\right|_{(1.4)} \leq 0$ and $\left.F^{\prime}\right|_{(1.4)}=0$ $\operatorname{iff}(S(t), E(t), I(t), R(t))=\left(\frac{A}{d}, 0,0,0\right)$.

9. COVID-19 equation Analysis 7

Let $P_{1}=(\bar{S}, \bar{E}, \bar{I}, 0)=\left(\frac{(\mu+d)(\eta+d)}{\mu\left(\beta+\beta_{1}\right)}, \frac{A}{\mu+d}-\frac{d(\mu+d)}{\mu\left(\beta+\beta_{1}\right)}, \frac{A \mu}{(\mu+d)(\eta+d)}-\frac{d}{\beta+\beta_{1}}, 0\right)$, the linearized equations of (1) at P_{1} is

$$
\left\{\begin{array}{l}
\frac{d S(t)}{d t}=-\left(d+\left(\beta+\beta_{1}\right) \bar{I}\right) S(t)-\left(\beta+\beta_{1}\right) \bar{S} I(t) \tag{3.4}\\
\frac{d E(t)}{d t}=\left(\beta+\beta_{1}\right) \bar{I} S(t)-(\mu+d) E(t)+\left(\beta+\beta_{1}\right) \bar{S} I(t), \\
\frac{d I(t)}{d t}=\mu E(t)-(\eta+d) I(t), \\
\frac{d R(t)}{d t}=\eta I(t-\tau)-d R(t-\tau) .
\end{array}\right.
$$

Therefore, the associated transcendental characteristic equation of (3.4) is,
$\left(\lambda-\eta e^{-\lambda \tau}+d\right)\left(\lambda^{3}+k_{1} \lambda^{2}+k_{2} \lambda+k_{3}\right)=0$,
Here $k_{1}=\mu+\eta+3 d+\frac{A}{\mu+d}-\frac{d(\mu+d)}{\mu\left(\beta+\beta_{1}\right)}, k_{2}=(\mu+\eta+2 d)\left(d+\frac{A}{\mu+d}-\frac{d(\mu+d)}{\mu\left(\beta+\beta_{1}\right)}\right)$,
$k_{3}=A\left(\beta+\beta_{1}\right) \mu-d(\mu+d)(\eta+d)$.
Let us consider,
$\lambda^{3}+k_{1} \lambda^{2}+k_{2} \lambda+k_{3}=0$.
Clearly, if $R_{0}>1$, we have $k_{1}=\mu+\eta+3 d+\frac{A}{\mu+d}-\frac{d(\mu+d)}{\mu\left(\beta+\beta_{1}\right)}>0$ and
$k_{3}=A\left(\beta+\beta_{1}\right) \mu-d(\mu+d)(\eta+d)>0$ hold; furthermore,
$k_{1} k_{2}-k_{3}=\left(\mu+\eta+3 d+\frac{A}{\mu+d}-\frac{d(\mu+d)}{\mu\left(\beta+\beta_{1}\right)}\right)\left((\mu+\eta+2 d)\left(d+\frac{A}{\mu+d}-\frac{d(\mu+d)}{\mu\left(\beta+\beta_{1}\right)}\right)\right)$
$-A\left(\beta+\beta_{1}\right) \mu-d(\mu+d)(\eta+d)$
From the Routh-Hurwitz criteria,

$$
\begin{equation*}
\lambda-\eta e^{-\lambda \tau}+d=0 \tag{3.6}
\end{equation*}
$$

From (3.6), we have
$\left\{\begin{array}{l}v=-(\eta-d) \sin v t, \\ d=(\eta-d) \cos v t,\end{array}\right.$
$v^{2}=\gamma^{2}[\eta-d]^{2}-d^{2}$.

If $1<R_{0}<1+\frac{\left(\beta+\beta_{1}\right) \mu^{2} d}{(\mu+d)(\eta+d) \gamma d}$, then $v^{2}<0$.

10. COVID-19 equation Analysis 8

Let $S_{1}(t)=S(t)-\bar{S}, E_{1}(t)=E(t)-\bar{E}, I_{1}(t)=I(t)-\bar{I}, R_{1}(t)=R(t)-\bar{R}$. Therefore, (1) becomes

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{d S(t)}{d t}=-\left(d+\left(\beta+\beta_{1}\right) \bar{I}\right) S(t)-\left(\beta+\beta_{1}\right) S(t) I(t)-\left(\beta+\beta_{1}\right) \overline{S I}(t), \\
\frac{d E(t)}{d t}=\left(\beta+\beta_{1}\right) S(t) I(t)+\left(\beta+\beta_{1}\right) \bar{I} S(t)-(\mu+d) E(t)+\left(\beta+\beta_{1}\right) \bar{S} I(t), \\
\frac{d I(t)}{d t}=\mu E(t)-(\eta+d) I(t), \\
\frac{d R(t)}{d t}=\eta I(t-\tau)-d R(t-\tau) . \\
\left\{\begin{array}{l}
\frac{d S(t)}{d t}= \\
\frac{d E(t)}{d t}=\left(d+\left(\beta+\beta_{1}\right) \bar{I}\right) S(t)-\left(\beta+\beta_{1}\right) \bar{S} I(t), \\
\frac{d I(t)}{d t}= \\
\frac{d R(t)}{\frac{d P}{d t}}= \\
=\eta I(t-\tau)-(\eta+d) I(t),
\end{array}\right. \\
C(\lambda)=\lambda^{4}+U_{1} \lambda^{3}+U_{2} \lambda^{2}+U_{3} \lambda+U_{4}-\left(V_{1} \lambda^{3}+V_{2} \lambda^{2}+V_{3} \lambda+V_{4}\right) e^{-\lambda \tau},
\end{array}\right.
\end{align*}
$$

Where,

$$
\begin{aligned}
& U_{1}=\mu+\eta+4 d+\left(\beta+\beta_{1}\right) \bar{I} \\
& U_{2}= \\
& d^{2}+(\mu+d)(\eta+d)+2(\mu+\eta+2 d) d+\left(\beta+\beta_{1}\right)^{2} \mu \overline{S \bar{I}}+\left(\beta+\beta_{1}\right) \bar{I} d \\
& U_{3}= \\
& \\
& \\
& \left.\quad(\mu+\eta+2 d) d^{2}+2(\mu+d)(\eta+d) d+(\mu+\eta+2 d)\left(\beta+\beta_{1}\right) \bar{I}+(\mu+d)(\eta+d) \bar{I}\right) \\
& U_{4}= \\
& \quad(\mu+d)(\eta+d) d^{2}+(\mu+\eta+2 d)\left(\beta+\beta_{1}\right) \bar{I} d+(\mu+d)(\eta+d)\left(\beta+\beta_{1}\right) \bar{I} d \\
& V_{1}=
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=\left(\beta+\beta_{1}\right) \mu \bar{S} \\
& V_{3}=2\left(\beta+\beta_{1}\right) \mu d \bar{S}+\left(\beta+\beta_{1}\right)^{2} \mu \overline{S I} \\
& V_{4}=\left(\beta+\beta_{1}\right) \mu d \bar{S}+\left(\beta+\beta_{1}\right)^{2} \mu d \overline{S I} .
\end{aligned}
$$

11. COVID-19 equation Analysis 9

If $\tau=0$, Eq. (3.10) become

$$
\begin{equation*}
\lambda^{4}+\left(U_{1}-V_{1}\right) \lambda^{3}+\left(U_{2}-V_{2}\right) \lambda^{2}+\left(U_{3}-V_{3}\right) \lambda+U_{4}-V_{4}=0 \tag{3.11}
\end{equation*}
$$

Since $R_{0}>1+\frac{\left(\beta+\beta_{1}\right) \mu^{2} d}{(\mu+d)(\eta+d) \gamma d}, \bar{S}>0, \bar{E}>0, \bar{I}>0, \bar{R}>0$. By Routh-Hurwitz criteria, we get

$$
\begin{aligned}
& W_{1}=U_{1}-V_{1}=\mu+\eta+3 d+\left(\beta+\beta_{1}\right) \bar{I}>0 \\
& W_{2}=\left(U_{1}-V_{1}\right)\left(U_{2}-V_{2}\right)-\left(U_{3}-V_{3}\right) \\
& =\left(\mu+\eta+3 d+\left(\beta+\beta_{1}\right) \bar{I}\right)\left(\begin{array}{l}
d^{2}+(\mu+d)(\eta+d)+2(\mu+\eta+2 d) d+\left(\beta+\beta_{1}\right)^{2} \mu \overline{S I}+ \\
\left(\beta+\beta_{1}\right) \bar{I} d-\left(\beta+\beta_{1}\right) \mu \bar{S}
\end{array}\right] \\
& -\left[\begin{array}{l}
(\mu+\eta+2 d) d^{2}+2(\mu+d)(\eta+d) d+(\mu+\eta+2 d)\left(\beta+\beta_{1}\right) \bar{I}+(\mu+d)(\eta+d) \bar{I}- \\
2\left(\beta+\beta_{1}\right) \mu d \bar{S}-\left(\beta+\beta_{1}\right)^{2} \mu \overline{S I}
\end{array}\right]
\end{aligned}
$$

$$
W_{3}=\left|\begin{array}{ccc}
U_{1}-V_{1} & U_{3}-V_{3} & 0 \\
1 & U_{2}-V_{2} & U_{4}-V_{4} \\
0 & U_{1}-V_{1} & U_{3}-V_{3}
\end{array}\right|
$$

$$
=\left(U_{1}-V_{1}\right)\left[\left(U_{2}-V_{2}\right)\left(U_{3}-V_{3}\right)-\left(U_{1}-V_{1}\right)\left(U_{4}-V_{4}\right)\right]-\left(U_{3}-V_{3}\right)^{2} .
$$

Let $a=(\mu+d)(\eta+d), b=\beta+\beta_{1}$ and $c=\mu+\eta+2 d$.

$$
W_{3}=(c+d+b \bar{I})\left[\begin{array}{l}
\left.\binom{d^{2}+a+2 c d+b^{2} \mu \overline{S I}+}{b \bar{I} d-b \mu \bar{S}} \times\binom{ c d^{2}+2 a d+c b \bar{I}}{+a \bar{I}-2 b \mu d \bar{S}-b^{2} \mu \overline{S I}}\right]-\binom{c d^{2}+2 a d+c b \bar{I}+a \bar{I}+}{b^{2} d \mu \overline{S I}-2 b \mu d \bar{S}-b^{2} \mu \overline{S I}}^{2}, ~(c+d+b \bar{I})\left(a d^{2}+c b \bar{I} d+a b \bar{I} d\right)
\end{array}\right]
$$

Clearly, we have $W_{3}>0$.

$$
\begin{align*}
& W_{4}=\left|\begin{array}{cccc}
U_{1}-V_{1} & U_{3}-V_{3} & 0 & 0 \\
1 & U_{2}-V_{2} & U_{4}-V_{4} & 0 \\
0 & U_{1}-V_{1} & U_{3}-V_{3} & 0 \\
0 & 1 & U_{2}-V_{2} & U_{4}-V_{4}
\end{array}\right|=k_{4} W_{3} . \\
& C(\lambda)=0, \quad \operatorname{Re}(\lambda)<0, \quad \text { for } \tau \in\left[0, \tau_{0}\right), \tag{3.12}\\
& v^{4}-U_{1} v^{3} i-U_{2} v^{2}+U_{3} v i+U_{4}-\left(-V_{1} v^{3} i-V_{2} v^{2}+V_{3} v i+V_{4}\right)(\cos v \tau-i \sin v \tau)=0 . \tag{3.13}
\end{align*}
$$

After the real and imaginary parts have been separated, we have

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(V_{4}-V_{2} v^{2}\right) \cos v \tau+\left(V_{3} v-V_{1} v^{3}\right) \sin v \tau=v^{4}-U_{2} v^{2}+U_{4}, \\
\left(V_{1} v^{3}-V_{3} v\right) \cos v \tau+\left(V_{4}-V_{2} v^{2}\right) \sin v \tau=U_{1} v^{3}-U_{3} v .
\end{array}\right. \tag{3.14}\\
& \cos v \tau=\frac{1}{\Delta}\left|\begin{array}{cc}
v^{4}-U_{2} v^{2}+U_{4} & V_{3} v-V_{1} v^{3} \\
U_{1} v^{3}-U_{3} v & V_{4}-V_{2} v^{2}
\end{array}\right| \\
& =\frac{1}{\Delta}\left[\left(U_{1} V_{1}-V_{2}\right) v^{6}+\left(V_{4}+U_{2} V_{2}-U_{1} V_{3}-U_{3} V_{1}\right) v^{4}+\left(U_{3} V_{3}-U_{2} V_{4}-U_{4} V_{2}\right) v^{2}+U_{4} V_{4}\right] \\
& =\frac{1}{\Delta}\left(m_{1} v^{6}+m_{2} v^{4}+m_{3} v^{2}+m_{4}\right) . \\
& \sin v \tau=\frac{1}{\Delta}\left|\begin{array}{cc}
V_{4}-V_{2} v^{2} & v^{4}-U_{2} v^{2}+U_{4} \\
V_{1} v^{3}-V_{3} v & U_{1} v^{3}-U_{3} v
\end{array}\right| \\
& =-\frac{v}{\Delta}\left[V_{1} v^{6}+\left(U_{1} V_{2}-V_{3}-U_{2} V_{1}\right) v^{4}+\left(U_{2} V_{3}+U_{4} V_{1}-U_{3} V_{2}-U_{1} V_{4}\right) v^{2}+U_{3} V_{4}-U_{4} V_{3}\right] \\
& =-\frac{v}{\Delta}\left(n_{1} v^{6}+n_{2} v^{4}+n_{3} v^{2}+n_{4}\right) .
\end{align*}
$$

Where,
$\Delta=\left|\begin{array}{ll}V_{4}-V_{2} v^{2} & V_{3} v-V_{1} v^{3} \\ V_{1} v^{3}-V_{3} v & V_{4}-V_{2} v^{2}\end{array}\right|$
$=\left(V_{4}-V_{2} v^{2}\right)^{2}+\left(V_{3} v-V_{1} v^{3}\right)^{2}=V_{1} v^{6}+\left(V_{2}-2 V_{1} V_{3}\right) v^{4}+\left(V_{3}^{2}-2 V_{2} V_{4}\right) v^{2}+V_{4}^{2}$
$=\left(g_{1} v^{6}+g_{2} v^{4}+g_{3} v^{2}+g_{4}\right)>0$.

Noting $\sin ^{2} v \tau+\cos ^{2} v \tau=1$, it follows that

$$
\begin{equation*}
v^{14}+h_{1} v^{12}+h_{2} v^{10}+h_{3} v^{8}+h_{4} v^{6}+h_{5} v^{4}+h_{6} v^{2}+h_{7}=0, \tag{3.15}
\end{equation*}
$$

Where,
$h_{1}=\frac{1}{n_{1}^{2}}\left(m_{1}^{2}+2 d_{1} d_{2}-g_{1}^{2}\right)$,
$h_{2}=\frac{1}{n_{1}^{2}}\left(2 m_{1} m_{2}+n_{2}^{2}+2 n_{1} n_{3}-2 g_{1} g_{3}\right)$,
$h_{3}=\frac{1}{n_{1}^{2}}\left(m_{2}^{2}+2 m_{1} m_{3}+2 n_{1} n_{4}+2 n_{2} n_{4}-g_{2}^{2}-2 g_{1} g_{3}\right)$,
$h_{4}=\frac{1}{n_{1}^{2}}\left(2 m_{1} m_{4}+2 m_{2} m_{3}+n_{3}^{2}+2 n_{2} n_{4}-2 g_{1} g_{4}-2 g_{2} g_{3}\right)$,
$h_{5}=\frac{1}{n_{1}^{2}}\left(m_{3}^{2}+2 m_{2} m_{4}+2 n_{3} n_{4}-g_{3}^{2}-2 g_{2} g_{4}\right)$,
$h_{6}=\frac{1}{n_{1}^{2}}\left(2 m_{3} m_{4}+n_{4}^{2}-2 g_{3} g_{4}\right)$,
$h_{7}=\frac{1}{n_{1}^{2}}\left(m_{4}^{2}-g_{4}^{2}\right)$.
Denoting: $x=v^{2}$, (3.15) becomes

$$
\begin{equation*}
x^{7}+h_{1} x^{6}+h_{2} x^{5}+h_{3} x^{4}+h_{4} x^{3}+h_{5} x^{2}+h_{6} x+h_{7}=0 . \tag{3.16}
\end{equation*}
$$

Assume
$\left(C_{1}\right)$ Eq. (3.16) has only one positive real root;
$\left(C_{2}\right)$
$\Gamma \square\left[4 v^{6}+3\left(U_{1}^{2}-2 U_{2}-V_{1}^{2}\right) v^{4}+2\left(U_{2}^{2}-V_{2}^{2}+2 U_{4}+2 V_{1} V_{3}-2 U_{1} U_{3}\right) v^{2}+U_{3}^{2}-V_{3}^{2}+2 V_{2} V_{4}-2 U_{2} U_{4}\right]>0$ for any $v>0$.

Let x_{0} be the positive roots of (3.16), denoting $v_{0}=\sqrt{x_{0}}$. From the above, we get

$$
\tau_{i}=\frac{1}{v_{0}}\left(\arccos \frac{m_{1} v_{0}^{6}+m_{2} v_{0}^{4}+m_{3} v_{0}^{2}+m_{4}}{g_{1} v_{0}^{6}+g_{2} v_{0}^{4}+g_{3} v_{0}^{2}+g_{4}}+2 i \pi\right), \quad i=0,1,2, \ldots
$$

And

$$
\begin{align*}
& \tau_{0}=\frac{1}{v_{0}} \arccos \frac{m_{1} v_{0}^{6}+m_{2} v_{0}^{4}+m_{3} v_{0}^{2}+m_{4}}{g_{1} v_{0}^{6}+g_{2} v_{0}^{4}+g_{3} v_{0}^{2}+g_{4}}, \quad i=0 . \\
& {\left[\frac{d \lambda}{d \tau}\right]^{-1}=\frac{-\left(4 \lambda^{3}+3 U_{1} \lambda^{2}+2 U_{2} \lambda+U_{3}\right) e^{\lambda \tau}}{\lambda\left(V_{1} \lambda^{3}+V_{2} \lambda^{2}+V_{3} \lambda+V_{4}\right)}+\frac{3 V_{1} \lambda^{2}+2 V_{2} \lambda+V_{3}}{\lambda\left(V_{1} \lambda^{3}+V_{2} \lambda^{2}+V_{3} \lambda+V_{4}\right)}-\frac{\tau}{\lambda} .} \tag{3.17}
\end{align*}
$$

Noting (3.14), we have

$$
\begin{gather*}
\operatorname{Re}\left[\frac{d \lambda}{d \tau}\right]^{-1}=\frac{1}{v \nabla}\left\{\begin{array}{l}
\left(3 U_{1} v^{2}-U_{3}\right)\left[\left(V_{1} v^{3}-V_{3} v\right) \cos v \tau+\left(V_{4}-V_{4} v^{2}\right) \sin v \tau\right] \\
+\left(4 v^{3}-2 U_{2} v\right)\left[\left(V_{4}-V_{2} v^{2}\right) \cos v \tau-\left(V_{1} v^{3}-V_{3} v\right) \sin v \tau\right] \\
+\left(V_{3}-3 V_{1} v^{2}\right)\left(V_{1} v^{3}-V_{3} v\right)+2 V_{2} v\left(V_{4}-V_{2} v^{2}\right)
\end{array}\right] \\
=\frac{1}{\nabla}\left[\begin{array}{l}
4 v^{6}+3\left(U_{1}^{2}-2 U_{2}-V_{1}^{2}\right) v^{4}+2\left(U_{2}^{2}-V_{2}^{2}+2 U_{4}+2 V_{1} V_{3}-2 U_{1} U_{3}\right) v^{2} \\
+U_{3}^{2}-V_{3}^{2}+2 V_{2} V_{4}-2 U_{2} U_{4}
\end{array}\right] \tag{3.18}
\end{gather*}
$$

Where $\nabla=\left(V_{1} v^{3}-V_{3} v\right)^{2}+\left(V_{4}-V 2 v^{2}\right)^{2}>0$. If the hypothesis $\left(C_{2}\right)$ is satisfied, ten $(3.18)>0$ will hold for any $v>0$. So,
$\operatorname{Sign}\left\{\left.\operatorname{Re}\left[\frac{d \lambda}{d \tau}\right]\right|_{\tau=\tau_{0}}\right\}=\operatorname{sign}\left\{\left.\operatorname{Re}\left[\frac{d \lambda}{d \tau}\right]^{-1}\right|_{\tau=\tau_{0}}\right\} \square \operatorname{sign}()=1.$.

4. Conclusion

This paper gives only the mathematical analysis part. It is very helpful for beginners of mathematical biology and COVID-19 research. The same SEIR model compare to the real life data, we will get the good result.

References

1. M. Radha and S. Balamuralitharan, A study on COVID-19 transmission dynamics: stability analysis of SEIR model with Hopf bifurcation for effect of time delay, Advances in Difference Equations, (2020) 2020:523 https://doi.org/10.1186/s13662-020-02958-6.
2. T. Sundaresan, A. Govindarajan, S. Balamuralitharan, P. Venkataraman, and IqraLiaqat, A classical SEIR model of transmission dynamics and clinical dynamics in controlling of coronavirus disease 2019 (COVID-19) with reproduction number, AIP Conference Proceedings 2277, 120008 (2020); https://doi.org/10.1063/5.0025236, Published Online: 06 November 2020.
3. M. Suba, R.Shanmugapriya, S.Balamuralitharan, G. Arul Joseph, Current Mathematical Models and Numerical Simulation of SIR Model for Coronavirus Disease - 2019 (COVID19), European Journal of Molecular \& Clinical Medicine, Volume 07, Issue 05, 2020, 41-54, ISSN 2515-8260.
4. FanelliD , Piazza F . Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals 2020;134:109761.
5. Hellewell J ,Abbott S , Gimma A , Bosse NI, Jarvis CI, Russell TW, etal. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Global Health 2020;8:e488-96.
6. Kucharski AJ , Russell TW , Diamond C , Liu Y , Edmunds J , Funk S , et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis 2020.
7. Liu Y, Gayle AA, Wilder-Smith A, Rocklv J . The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 2020:1-4 .
8. MizumotoK ,Chowell G . Transmission potential of the novel coronavirus (COVID-19) onboard the diamond princess cruises ship. Infect Dis Modell 2020;5:264-70 .
9. Ndariou F, Area I, Nieto JJ, Torres DF. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 2020. doi: 10.1016/j.chaos.2020.109846 .
10. Y. Bai, L. Yao, T. Wei, et al. , Presumed asymptomatic carrier transmission of COVID-19. Journal of the American Medical Association, (2020). https://doi.org/10.1001/jama.2020.2565.
11. Z. Bekiryazici, M. Merdan, and T. Kesemen, Modification of the random differential transformation method and its applications to compartmental models, Communications in Statistics - Theory and Methods, (2020), 1-21. DOI: 10.1080/03610926.2020.1713372.
12. T. Chen, J. Rui, Q. Wang, Z. Zhao, J. Cui and L. Yin, A mathematical model for simulating the phase based transmissibility of a novel Corona-virus, Infectious Diseases of Poverty (2020) 9-24.
13. S. Choi, and M. Ki, Estimating the reproductive number and the outbreak size of COVID-19 in Korea, Epidemical Health, Volume: 42, Article ID: e2020011, (2020) 1-10, https://doi.org/10.4178/epih.e2020011.
14. Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S. Musa, M. H. Wang, Y. Cai, W. Wang, L. Yang and D. He, A conceptual model for the Corona-virus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action, International Journal of Infectious Diseases 93 (2020), 211-216.
15. W. C. Roda, M. B. Varughese, D. Han and M. Y. Li, Why is it difficult to accurately predict the COVID-19epidemic? Infectious Disease Modelling 5 (2020) 271-281.
