Pharmacognostical Evaluation of Some Traditionally Important Medicinal Plants of Chunar Region of Uttar Pradesh

Sandeep Singh- Research Scholar Faculty of pharmacy, Mansarovar Global University, Bhopal,M.P.,India

S. K. Gupta -Professor

Faculty of pharmacy, Mansarovar Global University, Bhopal, M.P., India

Vishal Gupta-Dean

Faculty of pharmacy, Mansarovar Global University, Bhopal, M.P., India

*Corresponding Author

E.mail: xensandy2k@gmail.com

Abstract

Herbs play a significant role, especially on modern time, when alarming effects and overmedication have assumed alarming properties. The growing interest in herb is a part of the movement towards change in life styles. The movement is based on the belief that the plants have potential for their uses as curative medicine. In the present investigation three plants were selected from Chunar region of Uttar Pradesh. In this study Pharmacognostical evaluation of *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, *Leucas cephalotes* Roxb. (Gumma) Flowers and *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers were investigated and reported.

Keywords: Medicinal Plants, Pharmacognostical Evaluation, Extraction, Phytochemical Screening

Introduction

Tribal and rural communities use a number of plants for the treatment of various human ailments. It is evident that many valuable herbal drugs have been discovered by knowing that a particular plant was used by the ancient folk healers for the treatment of some kind of ailments. Moreover, the medicinal plant wealth are our national heritage and it seems to be the first and foremost line of defence for the treatment of various diseases mostly tribal and rural communities and is a worth scientific study. India is endowed with a wealth of medicinal plants. It has a valuable heritage of herbal remedies like most developing countries. The tribal and rural population of India still relies on indigenous system of medicine to a great extent. Moreover, India exports large quantities of crude plants to the international market at very cheap prices due to lack of value addition in these products. One process that is upmost necessary for the addition of economic profit to these currently almost worthless but abundant product of India is to screen these plants for the various biological and pharmacological activities. A sincere step is need to establish the standardization parameters of these medicinal plants to set their in-order to prove the safety, efficacy and genuity of these herbs so that manufacturers can utilize them for identification and selection of the raw material for drug production. [1-3] The present work carries the results of pharmacogostical studies of some traditionally important medicinal plants of Chunar region of Uttar pradesh. It indicates the quality standards and utilization of selected plants for the treatment of various ailments among the inhabitants as mentioned in folk-lore and to validated scientifically.

Material and Methods

Selection and Collection of Plant Material

Three plants i.e., *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, *Leucas cephalotes* Roxb. (Gumma) Flowers and *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers were selected from Chunar region of Uttar Pradesh, for the present study.

Authentication of Plant/Plant Material

The plant parts viz., BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers and PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers were collected from local sites of Chunar region of Uttar Pradesh, India and identified morphologically, microscopically and compared with standard pharmacopoeial monograph. The sample of drug was also identified & authenticated by Dr. S. N. Dwivedi, Retd. Prof. and Head, Department of Botany, Janta PG College, A.P.S. University, Rewa, (M.P.)

Macroscopic studies [4-6]

The macroscopy of different parts of the plant viz., BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers and PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers such as color, odor, size, shape, taste, surface characters and fractures were carried out. The results were presented in table.

Physicochemical evaluation[7-10]

The dried plant parts of BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers and PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers were subjected to standard procedure for the determination of various physicochemical parameters. The dried parts were subjected to standard procedure for the determination of various physicochemical parameters.

Successive extraction of selected herbs [11-12]

Sample were shattered and screened with 40 mesh. The shade dried coarsely powdered plant matertial (250 gms) were loaded in Soxhlet apparatus and was extracted with petroleum ether (60-62°C), Chloroform, ethanol and water until the extraction was completed. After completion of extraction, the solvent was removed by distillation. The extracts were dried using rotator evaporator. The residue was then stored in dessicator and percentage yield were determined.

Preliminary phytochemical screening of extracts [13-15]

The various extracts obtained after extraction were subjected for phytochemical screening to determine the presence of various phytochemical present in the extracts. The standard procedures were adopted to perform the study.

Results and Discussion

The macroscopy of different parts of the plant viz., BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers and PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers such as color, odor, size, shape, taste, surface characters and fractures were carried out. The results were presented in table 1. The dried plant parts of BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb.

(Gumma) Flowers and PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers were subjected to standard procedure for the determination of various physicochemical parameters. The results were presented in table 2. The shade dried coarsely powdered plant material of BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers and PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers were extracted with Petroleum ether, Chloroform, Ethanol and Water. The extracts obtained were evaluated for pH, color and % yield. The results are presented in table 3. The shade dried coarsely powdered plant material of BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb. (Chotiharjori) Flowers were extracted with Petroleum ether, Chloroform, Ethanol and Water. The extracts obtained were evaluated for pH, color and % yield. The results are presented in table 3. The shade dried coarsely powdered plant material of BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers and PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers were extracted with Petroleum ether, Chloroform, Ethanol and Water. The extracts obtained were evaluated for pH, color and % yield. The results are presented in table 3.

S/No.	Parameters	BLF	LCF	PBF
1.	Color	Yellow	White	Purple
2.	Odor	Characteristics	Sweet	Characteristics
3.	Taste	Sweet	Sweet	Bitter
4.	Shape	Irregular & Curved	Oval	Oval
5.	Size	Variable	L=1.5-3.5 cm; B: 0.5-2.0 cm	L=0.5 – 1.5; B0.5-1.5 cm
6.	Surface character	Smooth	Smooth	Smooth
7.	Fractures	Absent	Absent	Absent

Table 1: Morphological Characters of Selected Plant Material

Abbr.: BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers and PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers

Fig. 1: *Blumea lacera* (Burm.f.) DC.(Nirmuli) Flowers

Fig. 2: Leucas cephalotes Roxb. (Gumma) Flowers

Fig. 3: Peristrophe bicalyculata (L) Merr. (Chotiharjori) Flowers

S/No.	Parameters	BLF	LCF	PBF
1.	FOM	2.19±0.12	2.01±0.18	1.92±0.03
2.	LOD	3.01±0.05	3.12±0.07	4.02±0.10
3.	ТА	10.98±0.05	8.23±0.03	10.17±0.02
4.	AIS	2.03±0.01	2.09±0.02	1.12±0.30
5.	WSA	4.34±0.11	3.79±0.12	3.31±0.16
6.	SI	3.03±0.10	3.03±0.11	3.81±0.19
7.	WSEV	16.24±1.03	14.11±1.09	13.39±0.03
8	ESEV	7.37±1.27	8.03±1.07	9.10±1.03

 Table 2: Physicochemical Evaluation of Selected Plant Material

Note: All values are expressed as Mean±SEM, n=3

Abbr.: BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers; LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers; PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers

Annals of R.S.C.B., ISSN:1583-6258, Vol. 24, Issue 2, 2020, Pages. 1979 - 1990 Received 20 October 2020; Accepted 04 December 2020.

Graph 1: Physicochemical Evaluation of Selected Plant Material

S/No.	Extract	Parameters				
		Nature of Extract	Color	pH	% Yield	
1.	PPEBLF	Semi solid	Greenish	6.98	0.91	
2.	CEBLF	Sticky solid	Off white	6.63	1.10	
3.	EEBLF	Semi solid	Yellow	7.1	8.38	
4.	AEBLF	Solid powder	Dark Yellowish	7.2	14.56	
5.	PEELCF	Sticky solid	Off White	6.98	0.63	
6.	CELCF	Semi solid	Off White	6.99	1.23	
7.	EELCF	Solid powder	Pale white	7.0	7.39	
8.	AELCF	Solid powder	Dirty white	6.9	11.72	

9.	PEEPBF	Sticky solid	Dark blue	6.8	0.51
10.	CEPBF	Semi solid	Blackish blue	7.3	0.98
11.	EEPBF	Solid powder	Light violet	6.9	6.19
12.	AEPBF	Solid powder	Dark violet	7.1	10.32

Abbr.: PEE= Petroleum ether extract; CE=Chloroform extract; EE= Ethanolic extract; AE=Aqueous extract

BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers; LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers; PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers

Graph 2: % Extract Yield of Selected Plant Material

Table 4: Preliminary Phytochemical Screening of *Blumea lacera* (Burm.f.) DC.

(Nirmuli) Flowers

S/No.	Constituents	Flower Extract				
		PEE	СЕ	EE	AE	
1.	Carbohydrates	+	+	+	+	
2.	Glycosides	-	-	-	-	
3.	Alkaloids	-	-	+	+	
4.	Protein & Amino acid	-	-	+	+	
5.	Tannins & Phenolic compounds	-	-	-	-	
6.	Flavonoids	-	-	+	+	
7.	Fixed oil and Fats	-	-	+	+	
8.	Steriods & Triterpenoids	+	+	+	+	
9.	Waxes	-	-	-	-	
10.	Mucilage & Gums	-	-	-	-	

+ = Present; - = Absent

 Table 6: Preliminary Phytochemical Screening of Leucas cephalotes Roxb. (Gumma)

 Flowers

S/No.	Constituents	Flower Extract			
		PEE	СЕ	EE	AE
1.	Carbohydrates	+	+	+	+
2.	Glycosides	-	-	-	-
3.	Alkaloids	-	-	-	+
4.	Protein & Amino acid	-	-	+	+
5.	Tannins & Phenolic compounds	-	-	-	-
6.	Flavonoids	-	+	+	+
7.	Fixed oil and Fats	-	-	+	+
8.	Steriods & Triterpenoids	-	+	+	+

9.	Waxes	-	-	-	-
10.	Mucilage & Gums	-	-	-	-

+ = **Present;** - = Absent

Table 7: Preliminary Phytochemical Screening of Peristrophe bicalyculata (L) Merr.(Chotiharjori) Flowers

S/No.	Constituents	Flower Extract				
		PEE	СЕ	EE	AE	
1.	Carbohydrates	-	-	+	+	
2.	Glycosides	-	-	-	-	
3.	Alkaloids	-	-	-	+	
4.	Protein & Amino acid	-	-	+	+	
5.	Tannins & Phenolic compounds	-	-	-	-	
6.	Flavonoids	-	+	+	+	
7.	Fixed oil and Fats	-	-	+	+	
8.	Steriods & Triterpenoids	+	+	+	+	
9.	Waxes	-	-	-	-	
10.	Mucilage & Gums	-	-	-	-	

+ = Present; - = Absent

Conclusion

The macroscopy of different parts of the plant viz., BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers and PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers such as color, odor, size, shape, taste, surface characters and fractures were carried out and reported. The dried plant parts of BLF= *Blumea lacera* (Burm.f.) DC. (Nirmuli) Flowers, LCF= *Leucas cephalotes* Roxb. (Gumma) Flowers and PBF= *Peristrophe bicalyculata* (L) Merr. (Chotiharjori) Flowers were subjected to standard procedure for the determination of various physicochemical parameters. In this study FOM, LOD, TA, SI and EV were determined.Successive extraction was performed and extracts obtained were evaluated for pH, color and % yield. EE and AE have more % yield than PEE and

CE. Phytochemical screening revealed the present of active phytoconstituents. EE and AE have more active constituents than PEE and CE.

References

- Dwivedi, S. N., Shrivastava, Satyaendra, Dwivedi, Sangeeta, Dwivedi, Abhishek, Dwivedi, Sumeet and Kaul, Shefali (2007). Relevance of Medicinal Herbs used in traditional system of medicine, *Farmavita.Net*, Aug.
- Dwivedi, Sumeet (2010). Need of standardization of Ayurvedic herbs: Present status and future prospects; Abstract in National Seminar on *Analytical Method Development and Biomedical Analysis*, organized by B.R.Nahata College of Pharmacy, 28-29.Oct.2010, Mandsaur, M.P.
- Dwivedi, Sumeet and Dubey, Raghvendra (2009). QC of Herbals with special reference to standardization parameters: An overview; Abstract in National Seminar on *Technological and Regulatory aspects of Herbal Drugs Analysis*, 7-Oct., 2009, Mandsaur, M.P.
- Dutta, A.C. (1964). *Botany for Degree Students*, Qxford University Press, New Delhi, 1st Ed., 177-179.
- Sardana, S. and Sharma, O.P. (2007). A Text book of Pharmaceutical Biology, Birla Publicatins Pvt. Ltd., New Delhi, Ist Ed., 123-124.
- Jackson, B.P. and Snowdon, D.W. (2005). Atlas of Microscopy of Medicinal Plants, Culinary Herbs and Spice, CBS Publishers and Distributors (P) Ltd., New Delhi.
- 7. *The Ayurvedic Pharmacopoeia of India* (2001), Part-I, Vol-I, Published by The controller publication, Govt. of India, Ministry of Health & Family Welfare, 137-146.
- 8. *Quality Control Methods for Medicinal Plant Materials* (1998). World Health Organization, Geneva, 8-30.
- 9. Harborne, J.B. (1984).Phytochemical methods, Chapman and Hall, London. Ist Edition.
- 10. Harborne, J.B. (1984).Phytochemical methods, Chapman and Hall, London. Ist Edition.
- Kokate, C.K. (1997). Practical Pharmacognosy, Vallabh Prakashan, Delhi., 4th Edition, 107 - 111.
- Divakar, M C. (2002). *Plant drug evaluation-a laboratory guide*, published by, CD remedies, 2nd ed., 84-92.

- Rangari Vinod D. (2002). *Pharmacognosy and Phytochemistry*, Part-I, First edition, 374-378.
- 14. Shah C. S. and Quadry J. S. (1985). A text book of Pharmacognosy, B. S. Shah Prakashan, Vth Edition, 177.
- 15. Kar, Ashutosh (2007). *Pharmacognosy and Pharmacobiotechnology*, Second edition, New age international (P), Ltd, 247-248.