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ABSTRACT 

Acute leukaemia is a malignancy of the white blood cells that is aggressive and progressing. The 

illness can be further divided into two subtypes, each of which affects different types of white blood  

cells. Since, Myeloid cells are a type of white blood cell that protects the body against parasites, 

reduces the frequency of tissue damage, and fights bacterial infections. Lymphocytes are primarily 

involved in the defence against viral infections. The aim of this study is to analyze the lifetime of the 

survival patients with acute myeloid leukemia. Since, clinical data provides important tools for a 

possible development of surveillance system for the acute myeloid leukemia. In survival analysis, to 

performing an experiment up to a certain period of time or getting the desired number of failures is 

time-consuming and costly. Many of the available observations remains censored and only give the 

survival information of testing units up to a noted time and not about the exact failure times. In this 

article, the Akshaya distribution is considered as a survival lifetime model. Censoring time is also 

assumed to follow Akshaya distribution with a different parameter. A survival study will be perform 

for the Acute Myelogenous Leukaemia patients data. 

Keywords: Acute Myelogenous Leukaemia, Akshaya Distribution, Random Censoring, Maximum 

Likelihood Estimation, Bayesian Analysis. 

 
1. Introduction 

The Acute myelogenous leukaemia is a blood and bone marrow cancer in human beings, which 

affects the spongy region inside bones where blood cells are produced. Sincethe word ”acute” denotes 

the disease’s rapid progression in acute myelogenous leukemia. Myelogenous leukaemia is defined as 

a kind of leukaemia that affects a group of white blood cells known as myeloid cells, which develop 

into various types of mature blood cells such as red blood cells, white blood cells, and platelets. 

Acute myelogenous leukemia is also known as acute myeloid leukemia, acute myeloblastic leukemia, 

acute granulocytic leukemia and acute nonlymphocytic leukemia. Acute myelogenous leukaemia 

develops when the genetic material or Deoxyribonucleic acid (DNA) of a bone marrow cell changes.  

The DNA of a cell includes the instructions that tell it what to do. Normally, the cell’s DNA directs it  

to grow at a predetermined rate and die at a specific time. The mutations in acute myelogenous 

leukaemia tell the bone marrow cell to keep growing and dividing. Acute myelogenous leukemia 

occurs when a bone marrow cell develops changes in its genetic material or DNA. A cell’s DNA 

contains the instructions that tell a cell what to do. The Blood cell production becomes uncontrollable 

as a result of this. The bone marrow generates immature cells that progress into myeloblasts, which 

are leukemic white blood cells. These dysfunctional cells can accumulate and crowd out healthy cells 
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because they are unwilling operate properly. Although it’s exactly what causes the DNA alterations 

that lead to leukaemia, doctors have identified risk factors. The risk factors that may be increased risk  

of acute myelogenous leukemia include increasing age, sex, previous cancer treatment, exposure to 

radiation, dangerous chemical exposure, smoking, other blood disorders, genetic disorders. 

Pathologists used bone marrow biopsy, aspirate, and peripheral smears to determine the diagnosis of 

acute myelogenous leukemia. Following that, the haematologist who treated the patients for acute 

myelogenous leukaemia looked at each   of them. Patients with breast cancer are at an increased risk 

of developing a secondary cancer. This could be due to the dose and length of treatment with these 

drugs. Since, Embury et al. (1977) discussed and observed the efficacy of maintenance chemotherapy 

for acute myelogenous leukaemia and conducted by at Stanford University. After reaching a stage of 

remission through treatment by chemotherapy, patients were randomized into two groups. Patients 

were randomly assigned to one of two groups after achieving remission with chemotherapy. The first 

group received chemotherapy for maintenance, while the second group did not. The main aim of 

experiment to examine that the maintenance in chemotherapy to increase the length of the remission. 

The material presented here was used to conduct a preliminary study in October 1974. 

 

1.1  Statistical Methodology 

In clinical trials, the medical researchers undertake survival experiment on humans, animals,  

and the environment, among other things, with the primary objective of understanding the 

fundamental principle of observed lifetime. Survival analysis is important when the time between 

exposure and event is of clinical interest. The majority of medical and epidemiological investigations 

are undertaken with the goal of determining the occurrence of a specific outcome event. The Clinical 

studies are primarily concerned with determining the time to event or outcome. The time to an event 

could differ from the time to a fatal event, such as death, or the time to occur. In such experiments, 

generally, conducting life-testing examinations cost, time and resources, and it necessitate a 

significant amount of money and human resources. Different kinds of censoring schemes that have  

been developed and discussed in the literature for reduce the cost and duration of experimentation. 

These censoring schemes are also useful for performing experiments with limited resources and time. 

Few popular censoring schemes are Type-I and Type-II in which the experiment time and maximum 

number of failures, respectively, are being fixed in advance in a given experiment. However, with 

both censoring schemes, either additional time is required or the necessary numbers of failure items 

are not obtained. A randomly censored sample when both the experimental unit and censoring time 

points are independent of each other outcomes. A patient who moves away from the experimental 

environment before the event of interest occurs is considered a randomly censored value i.e. A 

randomly censored value is a participant who leaves the experimental environment before the event 

of interest occurs. Such patients do not complete the course of treatment in actual situations, 

especially in clinical trials, and they leave owing to a variety of environmental conditions before even 

the experiment’s end point. The entry and exit times of participants in an investigation are 

unpredictable in a random censoring environment. As a result, each unit has an independent and 

identically distributed by censoring time, as well as corresponding failure times at the stipulated time. 

In this scenario, the observed sample is determined by measuring the minimum from the censoring 
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time and failure time. For random censoring, various lifetime distributions for the failure time and 

censoring time have been investigated, including exponential, Normal, Maxwell, Rayleigh, gamma, 

and Weibull, among others. 

In literature, many authors have discussed the random censoring setup by considering 

different lifetime models. In this regard, Nandi and Dewan (2010) used the expectation maximization 

(EM) algorithm to estimate the parameters of the Marshall-Olkin bivariate Weibull distribution in the 

presence of random censoring. Kumar and Garg (2014) discussed the parameter estimation procedure 

for the parameters of bivariate Weibull distribution under random censoring by using the EM 

algorithm. The extensive simulations are conducted to indicate that the calculators perform random 

censorship efficiently. Krishna et al. (2015) presented the maximum likelihood estimates of the 

parameters of the Maxwell distribution under the random censoring scheme with their confidence 

intervals and also discussed the Bayesian procedure for calculating the estimate of the related 

function under the squared error loss function. For the randomly censored data, Kim (2016) 

considered statistical conclusions about estimating the parameters of a Weibull distribution. The 

estimates of parameter are derived by ML and approximation ML methods. Kumar (2018) discussed 

the procedure of parameter estimation and analyzed reliability characteristics under a randomly 

censored sample when both are followed by the loglogistic distribution. In continuation of this, 

Kumar and Kumar (2019) analyzed the parameter estimation procedure of the inverse Weibull 

distribution under a random censoring setup under the classical and Bayesian paradigms. Ajmal et al. 

(2021) considered the random censorship model using Weibull distribution and compare it with 

maximum likelihood and Jeffreys methods. They found that closed-form formulations are not 

practicable for the Bayes estimators, which meant that the approximate Bayes estimates were utilized 

for this importance sampling technique. 

Many well-known distributions are used in life testing experiments. But for particular real 

data, the search for a more suitable model is always in demand. Common objectives of all scientists 

are to be analyzing the lifetime data. This information is from their experiments, which could be in 

areas such as demography, engineering, life science, health management, and so on. The main focus 

of an analytic technique is on statistics that can be used to plan future events. Modeling of the data 

can be done in a variety of ways, both basic and complicated. A well-established methodology is to fit 

the data using a distribution based procedure and then acquire the relevant statistics. The benefit of 

this technique is that once a good model for the gathered observations in an experiment is found, all 

of the model’s properties can be used immediately. Shanker (2017) introduced the Akshaya 

distribution, a new one-parameter continuous distribution for lifetime modeling in medical and 

engineering science. Since, the hazard function of the Akshaya distribution increases or decreases 

(depending on its parameter), this distribution is adaptable to real-world analysis. Shanker (2017) 

studied the Akshaya distribution’s statistical features and determined the maximum likelihood 

function for both complete and censored sample situations. They exemplify the fitting and analysis of 

an actual data set. Ramadan et al. (2021) show the basic properties of the generalized power Akshaya 

distribution and discussed the classical and Bayesian estimation procedure for the parameter. 

Let us define the underlying lifetime Akshaya distribution, if X be a random variable follows Akshaya 

distribution and the probability density function (pdf) is given as 
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f(x. θ) = 
θ4(1+X)3e−θx 

θ3+3θ2+6θ+6 
; x, θ > 0 (1) 

where θ is the scale parameter of Akshaya distribution. The survival function at given 

time t of Akashaya distribution is given by 

𝑆(𝑡, 𝜃) = 
𝑒(−𝜃𝑥) 

[𝜃3(𝑡2 + 1) + 3𝜃2𝑡2(𝜃 + 1) + 3(𝜃𝑡 + 1)(𝜃2 + 2𝜃 + 2)] (2) 
𝜓(𝜃) 

where, 𝜓(𝜃) = 𝜃3 + 3𝜃2 + 6𝜃 + 6. 

The hazard function of Akashaya distribution is given by 

ℎ(𝑡, 𝜃) = 
𝜃4(1−𝑥)3

 

𝜉(𝑦,𝜃) 
(3) 

where, ξ(y, θ) = [θ3(t2 + 1) + 3θ2t2(θ + 1) + 3(θt + 1)(θ2 + 2θ + 2)] is the function of x and θ. 

In this paper, we studied the Akshaya lifetime model under the random censoring setup and 

obtained the estimates of the parameters under classical and Bayesian approaches. In Section 2, the 

failure model is derived under random censoring when the failure time and censoring variable are 

considered to follow the Akashaya distribution. The expressions of the probability of failure before 

censoring time and observed time to test are also given in this section. In Section 3, the maximum 

likelihood (ML) estimates are obtained with the asymptotic confidence intervals (ACIs) for 

distribution parameter. The Bayesian estimation procedure for parameters under squared error loss 

function by using the inverted gamma prior is discussed in Section 4. The Bayes estimates are 

obtained under the squared error loss function by using the Markov chain Monte Carlo (MCMC) 

method. Finally, Section 5 dedicated to real data analysis to study the applications. 

 

2. Setup of Problem 

 

Suppose the n subjects are put in the experiment with their lifetimes denoted as𝑋1, 𝑋2, … , 𝑋𝑛 

which are independent and identically distributed (i.i.d.) random variables having probability density 

function (pdf) 𝑓𝑋(𝑥, 𝜃)) and cumulative distribution function (cdf) 𝐹𝑋(𝑥, 𝜃), respectively. Also, let 

𝑇1, 𝑇2, … , 𝑇𝑛 denotes the random censoring times with pdf and cdf are 𝑔𝑇(𝑡, 𝛽) and 𝐺𝑇(𝑡, 𝛽), 

respectively, where β is the scale parameter. Moreover, let us assume that the random variables 

 
𝑋′𝑠 and 𝑇′𝑠, i=1, 2 ,…, n be mutually independent. Note that, in the between of 𝑋′𝑠 and 𝑇′𝑠, only 

𝑖 𝑖 𝑖 𝑖 

one will actually be observed at any particular time. Let us denote the actual observation time by 𝑌𝑖 = 

𝑚𝑖𝑛. (𝑋𝑖, 𝑇𝑖); 𝑖 = 1, 2, … , 𝑛. Also, define a new indicator variable𝐷𝑖, such that 

D  = {
1 , if Xi ≤ Ti 

i 0 , if Xi > Ti 
For a model of random censorship, Koziol and Green (1976) introduced a special model with For a 

model of random censorship, [6] introduced a special model with 

1 − Gt = (1 − TX)α, for some α > 0. 

Hence, α(α + 1) is the expected proportion of the censored observations and α is called the censoring 

parameter. The case α = 0 corresponds to no censoring. Since, Di follows to Bernoulli distribution 

with parameter p so the probability mass function of Di is given by 

P[Di = j] = pj(1 − p)1−j ; j = 0, 1 (4) 

Since, Xi's and Ti's are independent, so Yi's and Di's will also be independent. We define the joint 
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density function of Y and D, which is given by 

fY,D(y, d, θ, β) = {fX(y, θ)(1 − GT(y, β))}d{gT(y, β)(1 − FX(y, θ))}1−d. (5) 

y, β, θ > 0, d = 0, 1. Since, the X and T are follows to Akashaya distribution with parameter θ and 

β, respectively. By using the pdf and cdf of Akashaya distribution given in (1) and (2), we have 

θ4β4(1−d)(1 − y)3 

fY,D(y, d, θ, β) = 
ψ(θ)ψ(β) 

e−y(θ+β)ξ(y, θ)1−dξ(y, β)d 

Since, the probability of failure is defined by a unit fails before it is censored. So Akashaya 

distribution lifetime model, the mathematical expression of probability of failure is given by 

∞ β4(1 − t)3e−t(θ+β)ξ(t, θ) 
P[an items fails, d = 1] = P[X ≤ T] = ∫ 

0 
ψ(θ)ψ(β) 

dt
 

We can solve probability value by numerically for different values of θ and β. Table 1 shows the 

probability of failure (p) before the censoring time for different values of θ and β. We observed that  

the values of p increase with increasing values of β, for a fixed value of θ while a decrease in the 

values of p with increasing values of θ for a fixed value of β. 

 

𝜽 \ 𝖰 0.5 1.0 1.5 2.0 2.5 3.0 

0.5 0.5000 0.7102 0.7742 0.8412 0.8901 0.9478 

1.0 0.2898 0.5000 0.6147 0.7045 0.7837 0.8867 

1.5 0.2258 0.3853 0.5000 0.6137 0.7228 0.8142 

2.0 0.1588 0.2955 0.3863 0.5000 0.6248 0.7645 

2.5 0.1099 0.2163 0.2772 0.3752 0.5000 0.6412 

3.0 0.0522 0.1133 0.1858 0.2355 0.3588 0.5 

 
2.1 Expected Time on Test 

In lifetime experiments, the researchers are interested to estimate the total time of the test in the 

experiments. Since the cost of the experiment depends on the time of test. We derived the 

mathematical expression of expected time on test (ETT) and obtain for various values of θ, β and n in 

the random censoring scenario. Let us define the variable Z = max. (Y1, Y2, … , Yn), then the cdf of Z 

is given by 

FZ(z) = [P(Y1 ≤ z)]n; z > 0. 

Since 𝑌𝑖, 𝑖 = 1, 2, 3, … , 𝑛 are iid random variables, so we have 

𝑒−𝑦(𝜃+𝛽)𝜉(𝑧, 𝜃)𝜉(𝑧, 𝛽) 
𝑃[𝑌𝑖 ≤ 𝑧] = 1 − 

Using this expression, we get the cdf of Z as follows 

𝜓(𝜃)𝜓(𝛽) 

 

 
𝐹𝑧(𝑧) = [1 − 

 
Now, the desired ETT can be written as 

𝑒−𝑦(𝜃+𝛽)𝜉(𝑧, 𝜃)𝜉(𝑧, 𝛽) 
𝑛

 

𝜓(𝜃)𝜓(𝛽) 
]
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∫ 

i=1 

𝐸𝑇𝑇 [𝑜𝑟 𝐸(𝑧)] = 
∞

 
0 

 

(1 − [1 − 
𝑒−𝑦(𝜃+𝛽)𝜉(𝑧,𝜃)𝜉(𝑧,𝛽)    

𝑛
 

] 
𝜓(𝜃)𝜓(𝛽) 

 

) 𝑑𝑧 (6) 

In addition to ETT, one more quantity, observed time on test (OBTT) is of great in- terest. In 

case of random censored sample, OBTT can be given by quantity Z = max(Y1, Y2, . . . , Yn). 

In case of uncensored (complete) sample, we derive the OBTT. Let us define V = 

max(X1, X2, … , Xn), where 𝑋1, 𝑋2, … , 𝑋𝑛 is the observed sample values. Now, the distribution 

function of V is given by 

FV(v) = [P(X1 ≤ v)]n 

Since Xi's are i.i.d., therefore, the expected value of V is given by 

∞ ∞ 

E(V) = ∫ [1 − FV(v)]dv == ∫  [1 − [P(X1 ≤ v)]n]dv 
0 0 

Thus, for our underlying distribution Akashaya distribution, 
 

∞ 

OBTT = ∫0 

 

(1 − [ 
e−vθξ(v,θ)  

n
 

] 
ψ(θ) 

 
) dv (7) 

F this, Firstly we generate 5000 randomly censored samples as defined above section. By using 

(6) and (7), the easily obtained the value of ETT and OBTT under randomly censored data for 

different values of θ, β and n. 

3. Maximum Likelihood Estimation 

 

Let n subjects are put in the experiment under the random censoring scenario. Let X and T be 

the survival time and censoring time and both follow to Akshaya distribution with parameter θ 

and β, respectively. Since observed sample data is defined as the minimum of the X’s ad T’s. 

Now, we discuss parameter estimation for this model, we define the likelihood function of the 

observed sample of 𝑌1, 𝑌2, … , 𝑌𝑛 given parameter under random censoring. So, the likelihood 

function of Y is given by 
𝜃4𝑚𝛽4(𝑛−𝑚)  ∏𝑛 (1−𝑦𝑖)

3 
( ) ∑𝑛 𝑛 

𝐿(𝑦, 𝑑, 𝜃, 𝛽) = 𝑖=1 

𝜓(𝜃)𝑛𝜓(𝛽)𝑛 
𝑒− 𝜃+𝛽 

𝑖=1 𝑦𝑖   ∏𝑖=1[𝜉(𝑦𝑖, 𝜃)1−𝑑𝑖 𝜉(𝑦𝑖, 𝛽)𝑑𝑖 ] 

where, m = ∑n di. Now, on taking the logarithm of above equation, the log-likelihood 

function can be written in the following form 
𝑛 

𝑙(𝑦, 𝑑, 𝜃, 𝛽) = 4𝑚 𝑙𝑜𝑔(𝜃) + 4(𝑛 − 𝑚) log(𝛽) − 𝑛 log(𝜓(𝜃)) − 𝑛 log(𝜓(𝛽)) + 3 ∑ log(1 − 𝑦𝑖) 
𝑖=1 

𝑛 𝑛 𝑛 

− (𝜃 + 𝛽) ∑ 𝑦𝑖 + ∑ 𝑑𝑖 log  𝜉(𝑦𝑖, 𝛽) + ∑(1 − 𝑑𝑖) log  𝜉(𝑦𝑖, 𝜃) (8) 

𝑖=1 𝑖=1 𝑖=1 

Taking the partially differentiation of log likelihood function with respect to θ and β and then 

equating to zero, we get the ML estimator θˆ and βˆ of θ and β, respectively, as follow 
 

4𝑚 
− ∑𝑛 

 

𝑦  − 𝑛 
𝜓𝘍(𝜃) 

+ ∑𝑛
 

 

(1 − 𝑑 ) 
𝜉𝘍(𝑦𝑖,𝜃) 

= 0 (9) 
 

𝜃 𝑖=1    𝑖 𝜓(𝜃) 𝑖=1 𝑖    𝜉(𝑦𝑖,𝜃) 
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4(𝑛−𝑚) 
− ∑𝑛 

 

𝑦  − 𝑛 
𝜓𝘍(𝛽) 

+ ∑𝑛
 

 

𝑑 
𝜉𝘍(𝑦𝑖,𝛽) 

= 0 (10) 
 

𝛽 𝑖=1    𝑖 𝜓(𝛽) 𝑖=1 𝑖  𝜉(𝑦𝑖,𝛽) 
 

Where, 𝜉′(𝑦, 𝜃) = 3𝜃2(𝑦2 + 1)(3𝑦 + 1) + 6𝜃(𝑦2 + 2𝑦 + 6) + 6(𝑦 + 1),   𝜓′(𝜃) = 3𝜃2 + 6𝜃 + 

6,   𝜉′(𝑦, 𝛽) = 𝜉(𝑦, 𝛽) = 3𝛽2(𝑦2 + 1)(3𝑦 + 1) + 6𝛽(𝑦2 + 2𝑦 + 6) + 6(𝑦 + 1)    and   𝜓′(𝛽) = 

3𝛽2 + 6𝛽 + 6. Here, the ML equations of θ and β are not in closed form for obtaining the ML 

estimate of parameter. We used the numerical iteration method to solve the given equation. 

3.1 Interval Estimation 

 

The confidence intervals are measures of uncertainty in the sampling method. It defines the 

probability that the given population parameter would lie within the upper and lower set of values. 

Since the distribution of estimate of θ and β are not in closed-form so we can find the observed 

Fisher information matrix in the form 
 

 

 

𝐼(𝜉) = 

∂2l(y, d, θ, β) 
− 

∂θ2 − 

∂2l(y, d, θ, β) 
I− − 
[ ∂β ∂θ 

∂2l(y, d, θ, β) 
 

 

∂θ ∂β 

∂2l(y, d, θ, β)I 

∂β2 ]
(𝜃=�̂�,𝛽=�̂�) 

 

where, ξ̂ = (θ̂ , β̂)  is corresponding  ML  estimates  of  ξ = (θ,  β).  Thus,  using  the  asymptotic 

normality  of  estimators,  we  get  the   100(1 − α)%   confidence  limits  of  θ̂   and  β̂   by  θ̂ ± 
 

 

z √Var(θ̂) and  β̂  ± z 
 

 √Var(β̂ ) ,  respectively, where z is upper th percentile of 
 

 

α\2 α\2 α\2 100 (  ) 
2 

standard normal variate. The required functions in constructing the asymptotic confidence interval 

(ACI)’s are given as 

∂2l(y, d, θ, β) 
∂θ2 

|
 
θ=θ̂ 

n 4m 
 

ξ(y , θ)ξ′′(y , θ) − (ξ′(y , θ))2 
 

ψ( θ)ψ′′(θ) − (ψ′ θ))2 

= − 
θ2 + ∑(1 − di) 

i=1 

i i 
2 

(ξ(yi, θ)) 

 
 

2 

(ψ(θ)) 

 

∂2l(y, d, θ, β) 

∂β2 
|
 

 

 
θ=θ̂ 

 
 

 
4(n − m) 

 
 
 

ξ(y , β)ξ′′(y , β) − (ξ′(y , β))2 

 
 
 

ψ( β)ψ′′(β) − (ψ′ β))2 
 
 

and 

= − 
β2 + ∑ di 

i=1 

i i 
2 

(ξ(yi, β)) 

 
2 

(ψ(β)) 

∂2l(y, d, θ, β) 
 

 

∂β ∂θ 

 

| 
(θ,β)=(θ̂,β̂) 

∂2l(y, d, θ, β) 
= 

∂θ ∂β 

 

| = 0 
(θ,β)=(θ̂,β̂) 

α 

i − 

n 

i 
− 
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1 

2 

where, ξ′′(yi, θ) = 6(y + 1)2{θ(y + 1) + 1}, ξ′′(yi, β) = 6(y + 1)2{β(y + 1) + 1}, 

ψ′′(θ) = 6(θ + 1) and ψ′′(β) = 6(β + 1). 

Sometimes in this method, the lower bound of ACIs may be negative. In order to overcome this 

weakness, one method is to replace the lower bound by zero and another method [Lawless (2011)] 

is to apply logarithmic transformation to obtain the asymptotic normality of log(θ) and log(β)as 
ln θ̂−ln θ   

~N(0, 1) & 
ln β̂−ln β   

~N(0, 1) 
Var(ln θ̂) Var(ln β̂) 

Therefore, using the above property 100(1 – α/2)% ACIs of θ and β in this manner is given by 

[θ̂ exp (−zα√(V̂ar(ln  θ̂))),   θ̂ exp (zα√(V̂ar(ln  θ̂)))] 
2 2 

and 
 

[β̂ exp (−zα√(V̂ar(ln  β̂))),   β̂ exp (zα√(V̂ar(ln  β̂)))]. 
2 2 

 

4. Bayesian Estimation 
 

The Bayesian inferential approaches give a standardized mechanism for combining prior 

information obtained from previous imaging techniques. We apply the Bayes theorem in the 

Bayesian framework to update the likelihood of a linked event based on some past knowledge. 

As a result, we regard parameter to be a random variable that follows a previous knowledge 

distribution. Here, it is considered that the prior distribution of θ and β are gamma distribution, 

denoted by 𝐺(𝑎1, 𝑏1) and 𝐺(𝑎2, 𝑏2), respectively, and given as 

𝑏1𝜃𝑎1−1 

 

and 

𝜋∗(𝜃) = 

 

 
𝜋∗(𝛽) = 

 
 

Γ𝑎1 

 
𝑏2𝛽𝑎2−1 

 

Γ𝑎2 

𝑒−𝑏1𝜃   ; 𝜃, 𝑎1, 𝑏1 > 0 

 
 
𝑒−𝑏1𝛽   ; 𝛽, 𝑎2, 𝑏2 > 0 

where 𝑎1, 𝑎2, 𝑏1 and b2 are the hyper-parameter of prior distribution for θ and β. Since θ and β 

are independent, so the joint prior density is obtain by multiplying both priors density and 

written up to proportionality constants as follows 

𝜋∗(𝜃, 𝛽, 𝑦, 𝑑)   𝖺 𝜃𝑎1−1𝛽𝑎2−1𝑒−(𝑏1𝜃+𝑏2𝛽) (11) 

For obtaining the posterior distribution, we have to merge the likelihood function in (8) and the 

joint prior density in (11). The required posterior distribution of (θ, β) for given observation,  

comes out to be as follows 

𝜃4𝑚+𝑎1−1 𝛽4(𝑛−𝑚)+𝑎2−1 ∏𝑛 𝑦 
𝑛 𝑛 

Π(𝜃, 𝛽, 𝑦, 𝑑 )  𝖺   𝑖=1   𝑖 𝑒𝑥𝑝 [−𝜃 (𝑏  + ∑ 𝑦 ) − 𝛽 (𝑏  + ∑ 𝑦 )] 
𝜓𝑛(𝜃)𝜓𝑛(𝛽) 

 
𝑛 

1 𝑖 

𝑖=1 

2 𝑖 

𝑖=1 

𝖦[𝜉1−𝑑𝑖(𝑦𝑖 , 𝜃)𝜉𝑑𝑖(𝑦𝑖, 𝛽)] 

𝑖=1 

(12) 

The Bayes estimate of k(ϑ) = k(θ, β), say, is the function of θ and β under squared error loss 
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function (SELF), can be obtained as follows 

∬ 𝑘(𝜈)Π(𝜃, 𝛽. 𝑦, 𝑑 )𝑑𝜃𝑑𝛽 
𝐸{𝑘(𝜈)} = 

∬ Π(𝜃, 𝛽. 𝑦, 𝑑 )𝑑𝜃𝑑𝛽 

 

 
(13) 

We observe that the direct solution of the ratio of integral in (13) is not possible. In this regards,  

we have to utilize the Bayesian approximation technique which is available in literature. Here 

we used MCMC method for drive the Bayes estimate of parameter. For this purpose, the full 

condition distributions are given below 

 

Π(𝜃| 𝛽, 𝑦, 𝑑 )  𝖺 
𝜃4𝑚+𝑎1−1 

𝜓𝑛(𝜃)) 

𝑛 𝑛 

𝑒𝑥𝑝 [−𝜃  (𝑏1 + ∑ 𝑦𝑖)] 𝖦[𝜉1−𝑑𝑖(𝑦𝑖, 𝜃)] 
 

(14) 

 
Π( 𝛽| 𝜃, 𝑦, 𝑑 )  𝖺 

𝛽4(𝑛−𝑚)+𝑎2−1 
 

 

𝜓𝑛(𝛽) 

𝑖=1 𝑖=1 
𝑛 𝑛 

𝑒𝑥𝑝 [−𝛽 (𝑏2 + ∑ 𝑦𝑖)] 𝖦[𝜉𝑑𝑖(𝑦𝑖, 𝛽)] (15) 
𝑖=1 𝑖=1 

We observe that the marginal posterior distributions of θ and β cannot be obtained in the closed 

form, which is essential in order to obtain the Bayes estimates of parameters. 

4.1 MCMC Method 

In MCMC method, the Metropolis Hasting (MH) algorithm [Chen et al. (2012)] is utilized 

to generate the random sample from the full conditional of θ and β defined in (14) and (15). 

Here, the full conditional posterior densities of θ and β are independent of each other, so we can 

draw the samples θ and β from their (posterior marginal) density by MH algorithm 

independently. The necessarily steps to generate samples by the MH algorithm from conditional 

densities are given as follows: 

1. Set h=1 and take the initial value of parameters 𝜃(0) = �̂� and 𝛽(0) = �̂�. 

2. Generate   candidate   points   𝜃∗    and   𝛽∗from   proposal   density   𝑞1~𝑁(�̂�, 𝑣𝑎𝑟(�̂�))    and 

𝑞2~𝑁(�̂�, 𝑣𝑎𝑟(�̂�)) , respectively, we can easily generate the points 𝑢1 and 𝑢2 from a uniform 

distribution U(0, 1). Based on the initial value of parameter and 𝑢1 and 𝑢2 , we compute an 

acceptance ratio at the t th stage by the following expression 

 

𝑟1 = 
𝜋1(𝜃∗,𝑦 𝑑 )𝑞1(𝜃(𝑡−1)) 

𝜋1(𝜃(𝑡−1),𝑦 𝑑 )𝑞1(𝜃∗) 
and 𝑟2 = 

𝜋2(𝛽∗,𝑦 𝑑 )𝑞2(𝛽(𝑡−1)) 

𝜋2(𝛽(𝑡−1),𝑦 𝑑 )𝑞2(𝛽∗) 

3. Let 𝑃1(𝜃(𝑡−1), 𝜃∗) = min(𝑟1, 1), then set 𝜃(𝑡) = 𝜃∗ if 𝑢1 ≤ 𝑃1(𝜃(𝑡−1), 𝜃∗), otherwise 𝜃(𝑡) = 

𝜃((𝑡−1)). Similarly let 𝑃2(𝛽(𝑡−1), 𝛽∗) = min(𝑟2, 1), then set 𝛽(𝑡) = 𝛽 if 𝑢2 ≤ 𝑃2(𝛽(𝑡−1), 𝛽∗), 

otherwise 𝛽(𝑡) = 𝜃((𝑡−1)). 

4. set 𝑡 = 𝑡 + 1. 

5. Repeat steps (2)-(4) 𝑁′ times to get the sequence 𝜃1, 𝜃2, … , 𝜃𝑁
𝘍 

and 𝛽1, 𝛽2, … , 𝜃𝑁
𝘍

 

6. where 𝑁′ is a large number. 

From the sample generated by the MH algorithm, we discard the first few values from the 

generated chain to remove the dependency of initial value effects. Also, by using cumsum and 

ACF plots, we can diagnose the stationary in this chain. After that, we get a sample of size N, 
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based on which we can draw the required inferences. Additionally, we calculated the Bayesian 

credible intervals (BCIs) and highest posterior density (HPD) intervals of the parameter[Chen and 

Shao (1999)]. 

5.1 Simulation Data 

Here we consider a simulated sample for analysis to show that how one can use the results 

obtained in the previous sections, to solve a real life problem. In this scenario, we consider that 

both observed time and censoring time follow Akshaya distribution with parameters θ = 2.0 and β 

= 1.5, respectively. We generated an observed sample under random censoring of size n = 35. The 

observed sample is 0.05955, 0.06205, 0.13182, 0.18183+, 0.18581, 0.20109, 0.21115, 0.23109, 

0.25333, 0.30313+, 0.32741, 0.34921, 0.35559+, 0.44733+, 0.47636, 0.53807, 0.58269, 0.58340, 

0.63321,   0.63373,   0.71466,   0.73164,   0.81143,   0.83814+,   0.88371+,   0.92740,   0.98780+, 

1.13410+, 1.50894+, 1.56649+, 1.60643+, 1.62566+, 1.78527, 2.25083 and 3.73654, where y+ 

denoting the observed censored time. On the basis of the observed sample, the estimated values of 

parameters and other functions have been obtained. We consider the hyper-parameter values 𝑎1 = 

𝑎2 = 2and 𝑏1 = 𝑏2 = 3 for obtained the respected outcomes. The ML and Bayes estimate value 

of parameters and related functions are presented in Table 2. 
 

Figure 1: Histogram plot of posterior sample of θ and β. 
 

Table 2: The ML and Bayes Estimates values, ACI, BCI, HPD for θ and β, ETT an 

OBTT for Simulated Data set 

Estimate Value 𝜃  𝛽 

MLE 1.9742  1.5284 

ACI (1.7428, 2.4938)  (1.3947, 1.6481) 

Bayes Estimate 2.0664  1.5370 

BCI (1.7542, 2.4285)  (1.3475, 1.6840) 

HPD (1.8746, 2.1412)  (1.4033, 1.6234) 

ETT  2.4582  

OBTT  1.4580  
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5.2 Real Data Study 

 

In this section, we illustrate estimation procedures as discussed in the previous sections with the 

help of real data. since, the Acute myeloblastic leukaemia is a blood cell malignancy that affects 

the myeloid line. An excess of immature myleloid cells in the bone marrow hinders the normal 

synthesis of red blood cells, leading in anaemia and reduced platelet production, or 

thrombocytompenia. Patients with Acute myeloblastic leukaemia seek medical help because of 

exhaustion caused by anaemia or bleeding and bruising caused by a lack of platelets. The survival 

times (in days) of 23 Acute myeloblastic leukaemia patients were reported by Miller (1997). In 

the Figure 3, KM and QQ plots are given and it can be seen t+ hat the survival time of Acute 

myeloblastic leukaemia data time data fits Akashaya distribution. The KS test statistics (D) is 

found to be 0.2084 with p value greater than 0.05, which indicates that the there is no evidence to 

reject the hypothesis that the data is from Akshaya distribution. The random censored samples are 

obtained as: 5, 5, 8, 8, 9, 12, 13, 13+, 16+, 18, 23, 23, 27, 28+, 30, 31, 33, 34, 43, 45, 45+, 48, 

161+, where y+ denoting the censored time. There are 18 observations which are observed as 

exact failure time and 5 as randomly censored. Figure 2 present the patient survival time with 

their cause and boxplot for Acute myeloblastic leukaemia data. We assume the non-informatics 

prior density for the θ and β in Bayesian procedure. This sample considered as randomly censored 

data and estimates for the data are given in Table 3. Figure 4 shows the fitting of the distribution 

and Figure 5 presented the data cumsum, iteration and marginal posterior density plot of given 

data. 

Figure 2: Survival time and Boxplot for the Acute Myeloblastic Leukaemia patients data. 
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Figure 3: Kaplan–Meier and Q-Q plot for the Acute Myeloblastic Leukaemia patients data. 
 
 

 

 

Figure 4: ecdf plots of Acute Myeloblastic Leukaemia patients data. 
 
 

Table 3: The ML and Bayes estimates for AML data set 

Estimate Value 𝜃  𝛽 

MLE 0.1754  0.0746 

ACI (0.1684,0.1807)  (0.0622,0.0846) 

Bayes Estimate 0.1742  0.0719 

BCI (0.1698,0.1782)  ( 0.0674,0.0822) 

HPD (0.1712,0.1773)  ( 0.0692,0.808) 

ETT  157  

OBTT  45  

6. Discussion 

 

In this paper, We investigated the Akashaya distribution estimation process process us- ing the 
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random censoring scenario. For different combination of parameter values, we determined the 

probability of an item failing before censoring time. We also calculated the actual and expected 

exam time in both complete and censored environments. Un- der both classical and Bayesian 

scenario, parameter estimators and associated confidence intervals are determined. The proposed 

model is  supported by simulation  and survival data. For AML data, parameter and interval 

estimates are provided. All of the findings are favorable and support the desired research. 

 

7 Conclusion 

A cancer diagnosis offers a chance to become closer to you and assess how you might live a life 

that you like. Some patients respond better to treatment in their health than others. If an 

individual is treated for chemotherapy and their cancer will not return after five years. 

According to World Health organization, the palliative care is proper treatment for those who 

have a serious disease. Palliative care refers to any treatment that aims to alleviate symptoms, 

improve quality of life, and provide support to patients and their families. Palliative care is 

available to everybody, regardless of age, cancer kind, or stage. 

Palliative care works best when it is initiated as early as possible in the cancer treatment process. 

People are frequently treated for leukaemia at the same time as they are treated for adverse 

effects. Patients who receive both at the same time report having fewer severe symptoms, a 

higher quality of life, and a higher level of satisfaction with their treatment. Medication, 

nutritional adjustments, relaxation techniques, emotional support, and other therapies are 

common palliative treatments. You may also undergo palliative therapies such as chemotherapy 

or radiation therapy, which are comparable to those used to treat leukaemia. Discuss the aims of 

each treatment in the treatment plan with your doctor. 
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Figure 5: cumsum, Iteration and density plots based on marginal posterior distribution for θ and 

β based on Acute Myeloblastic Leukaemia patients data. 

References 

 

1. Ajmal, M., Danish, M. Y., and Arshad, I. A. (2021). Objective bayesian analysis for 

weibull distribution with application to random censorship model. Journal of Statistical 

Computation and Simulation, pages 1–17. 

2. Chen, M.-H. and Shao, Q.-M. (1999). Monte Carlo estimation of Bayesian credible and 

HPD intervals. Journal of Computational and Graphical Statistics, 8(1):69–92. 

3. Chen, M.-H., Shao, Q.-M., and Ibrahim, J. G. (2012). Monte Carlo methods in Bayesian 

computation. Springer Science & Business Media. 

4. Embury, S. H., Elias, L., Heller, P. H., Hood, C. E., Greenberg, P. L., and Schrier, S. L. 

(1977). Remission maintenance therapy in acute myelogenous leukemia. Western Journal 

of Medicine, 126(4):267. 

5. Kim, N. (2016). On the maximum likelihood estimators for parameters of a weibull 

distribution under random censoring. Communications for Statistical Applications and 

http://annalsofrscb.ro/


Annals of R.S.C.B., ISSN: 1583-6258, Vol. 24, Issue 2, 2020, Pages. 1448 -1462 

Received 24 October 2020; Accepted 15 December 2020. 

1462 

http://annalsofrscb.ro 

 

 

Methods, 23(3):241–250. 

 

6. Koziol, J. A. and Green, S. B. (1976). A Cramer-von Mises statistic for randomly censored 

data. Biometrika, 63(3):465–474. 

7. Krishna, H., Vivekanand, and Kumar, K. (2015). Estimation in Maxwell distribution with 

randomly censored data. Journal of Statistical Computation and Simulation, 85(17):3560– 

3578. 

8. Kumar, K. (2018). Classical and Bayesian estimation in Log-Logistic distribution under 

random censoring. International Journal of System Assurance Engineering and 

Management, 9(2):440–451. 

9. Kumar, K. and Garg, R. (2014). Estimation of the parameters of randomly censored 

generalized inverted Rayleigh distribution. International Journal of Agricultural and 

Statistical Sciences, 10:147–155. 

10. Kumar, K. and Kumar, I. (2019). Estimation in inverse Weibull distribution based on 

randomly censored data. Statistica, 79(1):47–74. 

11. Lawless, J. F. (2011). Statistical models and methods for lifetime data, volume 362. John 

Wiley & Sons. 

12. Miller, R. G. (1997). Survival Analysis. John Wiley & Sons. 

13. Nandi, S. and Dewan, I. (2010). An EM algorithm for estimating the parameters of 

bivariate Weibull distribution under random censoring. Computational Statistics & Data 

Analysis, 54(6):1559–1569. 

14. Ramadan, A. T., Tolba, A. H., and El-Desouky, B. S. (2021). Generalized power Akshaya 

distribution and its applications. Open Journal of Modelling and Simulation, 9(4):323–338. 

15. Shanker, R. (2017). Akshaya distribution and its application. American Journal of 

Mathematics and Statistics, 7(2):51–59. 

http://annalsofrscb.ro/

	ABSTRACT
	1. Introduction
	1.1  Statistical Methodology
	2. Setup of Problem
	2.1 Expected Time on Test
	3. Maximum Likelihood Estimation
	3.1 Interval Estimation
	4. Bayesian Estimation
	4.1 MCMC Method
	5.1 Simulation Data
	5.2 Real Data Study
	Table 3: The ML and Bayes estimates for AML data set
	7 Conclusion
	Acknowledgment
	Conﬂict of interest
	References

